複素数の極形式(極表示)と偏角

複素数の極形式(あるいは「極表示」)の定義と計算方法を説明します。これは三角関数と複素数の密接な関係を表すもので、複素数を平面図形的に扱える根拠ともなっています。

考え方の基本は、複素数の定義と、xy平面上の極座標の考え方を組み合わせるというものになります。それによって、複素数の乗法と除法(掛け算と割り算)には、独特の性質を持つ事が分かるようになります。

BGM:MUSMUS CV:CeVIOさとうささら

複素数の極形式とは?三角関数と複素数の密接な関係

複素数を三角関数で表現したものを複素数の極形式あるいは極表示と呼びます。じつはこれは、複素関数論や物理学等で、複素数を使う場合に本質的に重要になるのです。

複素数を次のように、三角関数を使った形で表したものを複素数の極形式と言います。

複素数の「極形式」

$$z=a+biの「極形式」:z=|z|(\cos \theta + i\sin \theta)$$ $$\cos \theta=\frac{a}{|z|}=\frac{a}{\sqrt{a^2+b^2}}\hspace{15pt}\sin \theta=\frac{b}{|z|}=\frac{b}{\sqrt{a^2+b^2}}$$

$$複素数の絶対値 |z| を r で表して、z=r(\cos \theta + i\sin \theta)の形式でもよく書かれます。$$

式だけ見ると唐突で複雑に見えるかもしれませんが、
じつはこれは図形的に理解してから式の意味を整理すると分かりやすいのです。

複素数の実部を直交座標のxy平面のx座標とみなし、
複素数の虚部(の実数係数部分)をy座標とみなす考え方があります。
そのように考えた仮想的な平面を複素平面と言い、
その時のx軸に相当する軸を「実軸」、y軸に相当する軸を「虚軸」と呼んだりします。
そのように考えると複素数を図形的に捉える事ができるようになり、考察をさらに進めると複素数の極形式の考え方が出てくるのです。

複素平面と実軸・虚軸
複素数の実部をx座標、虚部の係数をy座標にプロットします。このような「複素平面」において、複素数の絶対値は「原点から複素数を表す点までの距離」という図形的意味を持ちます。

複素平面において、まず「絶対値を原点から複素数までの距離」と考えます。すると、通常のxy平面における極座標の考え方を使えば、複素数の実部と虚部を三角関数を使って表せるはず・・・と考察したものが、上記の複素数の極形式の形なのです。

尚、絶対値を平方根で敢えて書いている部分 \(\cos \theta=\Large{\frac{a}{|z|}=\frac{a}{\sqrt{a^2+b^2}}}\)は、
図で表している部分を式で書いた表現になります。
単純に、直角三角形の1つの辺を斜辺で割った値として余弦や正弦を考えています。
(a や b はマイナスの値もとるので、角度は三角関数に対する一般角を考えている事になります。)

三角関数とみなしている項の部分\(\Large{\frac{a}{|z|}=\frac{a}{\sqrt{a^2+b^2}}}\)と\(\Large{\frac{b}{|z|}=\frac{b}{\sqrt{a^2+b^2}}}\)は、
値が必ず -1 以上 +1 以下です。(2乗してみるとすぐに分かります。)
さらに、これらを2乗して互いを加え合わせたものは1に等しくなります。

$$\left(\frac{a}{|z|}\right)^2+\left(\frac{b}{|z|}\right)^2=\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2+\left(\frac{b}{\sqrt{a^2+b^2}}\right)^2$$

$$=\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}=\frac{a^2+b^2}{a^2+b^2}=1$$

これらの事が三角関数の定義と調和しており、
そのために、三角関数としてみなせるという事なのです。

この時に、三角関数として表すからには「対応する角度が必ず存在する」はずですが、
それは実際に考える事ができるのです。しかもその仮想的な角度は、とりあえず数学上の辻褄合わせで考えておくというだけでなく、複素数の計算理論において重要な量なのです。

複素数に対して新たに導入した三角関数の角度部分として、新たに設定した実数 θ を、
その複素数の偏角と言います。複素数 z に対して arg z と表記する事もあります。
(英語では偏角の事を argument と言います。)

このように、複素数を「複素平面」に図示して考える時もあります。
この時、複素数同士の積は「複素平面上の『回転』」を表します。
複素数の極形式は、複素数の指数関数表示とも直接的に関わります。

複素数の乗法と除法、ド・モアブルの定理

複素数を極形式で表した時に成立する重要公式があり、それは
「2つの複素数の積は、『絶対値の積』と『偏角の和』で計算できる」というものです。

複素数の乗法・積に関して成立する公式

$$u=|u|(\cos \theta + i\sin \theta),\hspace{10pt}w=|w|(\cos \phi + i\sin \phi)のとき、$$ $$uw=|u||w|\{\cos (\theta+\phi)+i\sin (\theta+\phi)\}$$

この公式において絶対値が1で u = w の時、すなわち絶対値が1の複素数のベキ乗(「n乗」の事)を考えた場合の式は特にド・モアブルの定理と呼ばれる事が多いです。

$$ド・モアブルの定理:(\cos\theta+i\sin)^n=\cos(n\theta)+i\sin(n\theta)$$

他方で除法(割り算)の場合には、絶対値の部分を割り算し、割るほうの複素数の偏角にマイナス符号をつけて掛け算します。つまり、除法の場合は偏角部分を引き算する計算になるのです。

複素数の除法・商に関して成立する公式

$$u=|u|(\cos \theta + i\sin \theta),\hspace{10pt}w=|w|(\cos \phi + i\sin \phi)のとき、$$ $$\frac{u}{w}=\frac{|u|}{|w|}\{\cos (\theta-\phi)+i\sin (\theta-\phi)\}$$

この除法に関するほうの公式は、乗法の場合において片方の偏角 φ の符号を入れ替えて -φ に置き換えたものとみなす事もできます。
マイナスの角度というのは、
「平面上で通常の角度の向き(反時計回り方向)に対して『逆の方向(時計回り方向)』」に向けての角度と考える事ができますから、複素平面上の図形的な捉え方においても乗法の場合の公式で統一的に捉える事が可能です。

除法のほうの公式を考えてみると、ド・モアブルの定理においてべき乗の指数であるnは自然数だけではなく、マイナスの整数であってもよい事が分かります。
実数の1は「絶対値が1で偏角が0の複素数」と同じものである事に注意します。

$$例えば、(\cos \theta + i\sin \theta)^{-2}=\frac{1}{(\cos \theta + i\sin \theta)^2}=\frac{1}{\cos(2\theta) + i\sin(2\theta)}$$

$$=\cos (0-2\theta)+i\sin (0-2\theta)=\cos (-2\theta)+i\sin (-2\theta)$$

※さらに考察すると、任意の実数 x に対して (cos Θ + i sinΘ)x=cos (xΘ) + i sin(xΘ) です。

公式の証明

複素数の乗法および除法、ド・モアブルの定理の成立根拠は三角関数の加法定理です。

まず、極形式で表した2つの複素数の積をそのまま計算してみましょう。
すると、実部には余弦に関する加法定理、虚部には正弦に関する加法定理の形が現れるので、加法定理によって変形するとそれがそのまま公式の証明になるのです。

$$uw=|u|(\cos \theta + i\sin \theta)|w|(\cos \phi + i\sin \phi)$$

$$=|u||w|\{ \cos \theta \cos \phi – \sin \theta \sin \phi +i(\sin \phi \cos \theta + \sin \theta \cos \phi )\}$$

$$=|u||w|\{\cos (\theta+\phi)+i\sin (\theta+\phi)\}【証明終り】$$

割り算のほうの公式は、偏角に関しては前述の考え方と同じで片方の符号を入れ替えて、
絶対値部分については |w|=1/|w| の場合を考えればよいことになります。

あるいは、分母の複素数の共役複素数を分母と分子に掛けて直接証明してもよく、
偏角が θ である複素数の共役複素数の偏角は -θ になりますから、掛け算のほうの公式を使えばよい事になります。

$$乗法の公式で\phiを-\phiに置き換えてもいいし、次のようにしても結果は同じです。$$

$$\frac{u}{w}=\frac{u\overline{w}}{w\overline{w}}=\frac{|u||w|(\cos \theta + i\sin \theta)(\cos \phi – i\sin \phi)}{|w|^2}=\frac{|u|}{|w|}\{\cos (\theta-\phi)+i\sin (\theta-\phi)\}$$

さらなる考察

この極形式の観点から言うと、虚数単位 i は

$$i = \cos \frac{\pi}{2}+i\sin \frac{\pi}{2}$$

とも書ける事は重要です。
複素数の乗法に関する公式とも合わせて考えると、ある複素数に対して虚数単位 i を掛ける操作は、
「複素平面上では『90°回転』を意味する」という事が分かります。
物理学や一部の工学では、その分だけ「『位相』を進める」といった表現がされる事もあります。

式で書くと次のようになります。

$$i(\cos\theta+i\sin\theta)=\left(\cos \frac{\pi}{2}+i\sin \frac{\pi}{2}\right)(\cos\theta+i\sin\theta)=\cos\left(\frac{\pi}{2}+\theta\right)+i\sin\left(\frac{\pi}{2}+\theta\right)$$

公式の証明の箇所でも触れましたが、
ある複素数の共役複素数は、偏角の符号を入れ替えたものになります。
その事は図形的に見て確認する事もできますが、
虚部の符号を入れ替える事と、cos(-Θ)=cos および sin(-Θ)=-sinΘ の関係から見る事もできます。

$$z=\cos\theta +i\sin\thetaに対して、\overline{z}=\cos\theta -i\sin\theta=\cos(-\theta) +i\sin(-\theta)$$

また、極形式で書いた場合でも「ある複素数と共役複素数の積は、絶対値の2乗になる」という事が確かに成立する事が分かります。ある複素数とその共役複素数は、絶対値は同じである事に注意すると次のような計算になります。

$$z\overline{z}=|z|(\cos\theta+i\sin\theta)\cdot|z|\{\cos(-\theta)+i\sin(-\theta)\}$$

$$=|z|^2\{\cos(\theta-\theta)+i\sin(\theta-\theta)\}=|z|^2(\cos 0+i\sin 0)=|z|^2$$

偏角と回転・反転
虚数単位 i を2乗すると-1になるという計算や、虚部の符号を入れ替えた共役複素数についても、極形式の偏角の観点から複素平面上での図形的に解釈が可能です。

さらに、複素数の極形式を表す別の表記方法として複素数の「指数関数表示」というものがあります。これは「オイラーの式」と呼ばれる事もあります。

$$複素数の指数関数表示:e^{ix}=\cos x +i\sin x$$

e は自然対数の底(ネイピア定数)です。このような複素数が混じった指数関数においても、微積分を含めて通常の指数関数と同様の計算が成立します。複素数の乗法と除法の公式を考えると、指数関数の極形式における乗法や除法の計算と実は調和しています。

例えば指数関数の計算規則に従うと複素数の積は次のようになります。

$$e^{ix}e^{iy}=e^{i(x+y)}$$

これをよく見ると、複素数の極形式における乗法の計算と調和しているのです。

$$(\cos x + i\sin x)(\cos y + i\sin y)=\cos (x+y)+i\sin (x+y) $$

極座標と球面座標【考え方と変換方法】

座標変換のうち、理論面でも応用面でも良く使われる極座標と、その3次元版である球面座標について述べます。(※3次元の球面座標の事も極座標と呼ぶ事もあります。)
また合わせて、時々使われる円柱座標についても述べます。

極座標(polar coordinates)の「極」とは英語で言うと pole 、
北極とか南極で使う意味での「極」(「一方の果て」「端、両端」)になります。
尚、球面座標は英語だと spherical polar coordinates です。

関連事項のリンク(サイト内)

基本の考え方:三角関数を使う

極座標の発想自体は簡単で、
「平面座標のある点と原点とを結ぶと、必ず『長さと角度(x軸から測った角度)』で表せるはず」
という事なのです。

例えば、(1,1)という点は原点からの距離が\(\sqrt{2}\)で角度は\(\pi\)/4(あるいは45°)です。

(-1,1)という点であれば原点からの距離が\(\sqrt{2}\)で角度は3\(\pi\)/4(あるいは135°)です。
図で見ると単純で分かりやすいでしょう。

三角関数と極座標の関係
点(x,y)と原点との距離と、x軸から測った角度を考えます。角度は三角関数の定義を使う限りは度数法でも構いませんが、微積分を使う場合には弧度法で扱う必要があります。

極座標は、原点を中心とする円と原点を通る直線から構成される曲線座標でもあります。曲線座標のうち、最も簡単で便利でもあるものの1つです。

3次元で球面上の点と見なす場合には、後述しますように、原点からの長さに加えて角度を2つ使用します。

物理学での応用

極座標や球面座標を使う事によって、曲線の概形の把握が容易になる事や、微分方程式の解法が容易になる事があります。例えば、力学では等速円運動の分析において極座標を使うと簡単に中心力が働く事を導出できます。
また、万有引力が働くと軌道として楕円があり得るという理屈は、運動方程式を極座標変換する事で手計算で導出可能です。この時、軌道は条件によって円や放物線でもあり得る事が分かります。
(※運動方程式も含めて、微分方程式を座標変換する時はちょっとした面倒な計算が必要です。)
その他に、量子力学で水素原子の電子軌道の式を導出する時にも、基本の方程式で球面座標への変換が行われる事で手計算が可能となり、相対性理論でも時空の歪みが方向には依存しない(等方である)事を条件に課す時に座標の空間成分の一部が極座標・球面座標の形であると考えて理論が組み立てられます。

それらの微分方程式等を考える時に、強引にxyzの座標で考える事も不可能ではないのですが、手計算で計算を進める事は非常に困難になるのです。

変換方法:極座標

実際に変換をする時には、三角関数(図で直感的に考えるなら三角比)を使用します。図を描いてみると次の三点で必ず直角三角形を作れる事に起因します:

  1. ある座標の点
  2. その点からx軸に降ろした垂線の足
  3. 原点

そこで、原点からある点までの長さをr、x軸から測った角度をθとすると、
三角比の計算というか定義通りに、次の関係が成立します。

極座標変換の式
  • x=rcosθ
  • y=rsinθ

※この時に、θの範囲は全実数ですが、rは0以上の実数という事になります。

この時に、座標が負の値であっても正弦と余弦を三角関数として考えれば、正しく関係が満たされるのです。

極座標変換の式
直角三角形を作って考えます。xy平面の座標は、プラスマイナスの符号もそのままつけて考えます。

また、xとyの値からrとθを表す事もできます。

  • \(r=\sqrt{x^2+y^2}\)
  • \(\cos \theta=\Large{\frac{x}{\sqrt{x^2+y^2}} }\)\(\hspace{10pt}\sin \theta=\Large{\frac{y}{\sqrt{x^2+y^2}}}\)

※逆三角関数を使えば強引に θ=・・・の形にもできますが、一般にはあまりメリットがありません。

高校生の方であれば、これらの関係式は暗記するのではなく、xとyの式を2乗して加えるか、図の三角形の関係から直ちに理解できるように努める事が勧められます。

尚、これらの考え方は複素数の極形式の考え方に直結するものとなります。座標の原点回りの回転を考える時には複素数の極形式を使ったほうが良い場合もあります。(※回転に関しては、特にそれを群と見なす時には行列で考えたほうが良い事もあります。いずれの場合も、回転で基本となっているのは加法定理です。)

特定の関数で表された曲線を、極座標で表された点の集まりとして表示する事もできます。

例えばy=xを強引に極座標で表すには、x=rcosθとy=rsinθをそのまま代入すればよいのです。

すると、rsinθ=rcosθ ⇔ sinθ=r(1-sinθ) のような関係になります。
そのような関係式を満たすrとθの組み合わせの点の集まりが、y=xで表される放物線と全く同じものを表すという事です。

尚、半径Rの円の式に極座標変換を当てはめると、r=Rという形の式になります。
(rは座標の目盛で、Rは何かしらの定数です。r=一定の値という事です。)

+y=Rにx=rcosθとy=rsinθを代入すると
cosθ+rsinθ=R
⇔ r(cosθ+sinθ)=R
⇔ r=R ⇔ (r-R)(r+R)=0
rとRは正の数だからr=R

このように極座標で表す利点があるかないかは、その時々によって異なります。一般的には、円とか球とか、そういったぐるりと1周回るものを考える時や、周期性のあるものを考える時に極座標を使う計算上の利点がある場合が多いかとは思います。

球面座標

次に、球面座標を考えてみましょう。考え方自体は、2次元平面での極座標と同じなのです。

球面座標への変換の式
  • x=rsinφ cosθ
  • y=rsinφ sinθ
  • z=rcosφ

半径rは「球の半径」である事と、角度φの取り方に注意。
「sinφ cosθ」は、sinφ と cosθ との掛け算です。

θとφという2つの角度を使いますが、まずz座標から考えてみる事がポイントです。

まず「z軸」「原点」「点(x,y,z)」が作る角度をφとします。
そして、z座標をz=rcosφと表すのです。

球面座標
球面上の点を(x,y,z)とおいて、最初にz座標から考えます。次に、球面上の点からz=0のxy平面上に垂線を下ろします。この時の「垂線の足」となる点は、球面上ではなく球面の内側に位置します。(rsinφ < r の関係に注意。)

次に、xy平面上で測った角度も必要になります。z=0での平面を考えて、この面でのx軸から測る角度をθとします。「x軸」「原点」「球面上の点からの垂線の足(x,y)」が成す角をθとするという事です。

ここで、先ほどのφを使うと、原点から垂線の足までの距離はrsinφになります。(余弦ではなく正弦になります。)

すると、xとyは、「半径をrsinφと見なした時」の平面の極座標と全く同じ考え方で表す事ができるというわけです。つまり、半径であるrsinφに、それぞれcosθとsinθを掛ければよいという事です。

x=(rsinφ) cosθ =rsinφ cosθ, y=(rsinφ) sinθ =rsinφ sinθ という事になり、球面座標への変換の式が完成するわけです。暗記しようと思うといかにも面倒な式ですが、図で見ると非常に単純なものを意味する式である事が分かるかと思います。

円柱座標

最後に、円柱座標についても見ておきます。これは、3次元空間の点を円柱の側面として座標を考えるという事ですが、実は発想は非常に単純です。

まず、円柱には必ず底面となる円がありますから、底面がxy平面上にあるとすればxとyについては極座標と全く同じ式を使えます。

ではz座標はどうするのかというと、実は「何も変換しないでそのままzの値を使う」というふうにします。z=zとするのです。この単純な発想を受け入れると、円柱座標は次のようになります。

円柱座標への変換式
  • x=rcosθ
  • y=rsinθ
  • z=z

z座標を無視すると、普通の平面での極座標と全く同じ形です。
場合によってはz=hなどのように置き換えはしますが、意味は同じです。

実に単純である事が分かると思います。

円柱座標

このように、図も使ってシンプルに捉えれば難しいものではない事が理解できるでしょう。

三角関数の加法定理【証明】

三角関数の加法定理とは、三角関数の角度部分を和や差の形で表す時、個々の角度に対する三角関数の積と和などの組み合わせで計算できるという公式です。
(英:compound angle formulae)

高校数学の中では、その後に続く理論でも使うという意味では加法定理は重要な部類に入る関係式の1つであると言えます。

尚、対数関数についても「加法定理」という言葉を使用する事がありますが、ここでは三角関数についてのものを述べます。

定理の内容

正弦と余弦の加法定理4式 ■ 正接関数の加法定理

正弦と余弦の加法定理4式

三角関数の加法定理は、正弦・余弦・正接について存在しますが正弦と余弦の4式は次のようになります。

加法定理(正弦関数と余弦関数)

2つの角度をAとBとすると、次の関係式が成立します。

  1. sin(A+B)=sinAcosB+cosAsinB
  2. sin(A-B)=sinAcosB-cosAsinB
  3. cos(A+B)=cosAcosB-sinAsinB
  4. cos(A-B)=cosAcosB+sinAsinB

これらの角度の範囲は、三角関数での定義を使用するなら任意の実数になります。
負の数や2直角\(\pi\)を超える値になってもよいし、それらをAやBとして代入する事もできます。

これら4式について、1つの符号を反転させればもう1つの式が得られるので
「実質は正弦と余弦について1つずつ」の2つであると見なすことも可能です。

これは、-B=+Bのように考えて式をまとめても支障はないという意味です。
sin(A-B)=sin(A+(-B))=sinAcos(-B)+cosAsin(-B)=sinAcosB-cosAsinB
cos(A-B)=cos(A+(-B))=cosAcos(-B)-sinAsin(-B)=cosAcosB+sinAsinB
のように導出はすぐにできるので、覚えるのは4式ではなく2式でも計算はできます。

4式でやるか2式でやるかは、理解しやすいほう・覚えやすいほうの考え方でよいと思います。
1つの角度の符号を反転させて別の式の導出をするという考え方は証明でも使います。
また、証明の時に最初に証明されるのはcos(A-B)の式である都合上、最初から4式で考えたほうが理解しやすいという考え方もあります。

正接関数の加法定理

正接関数にも加法定理はありますが、正接は (正弦)/(余弦)で考えれば済む事と、使用頻度が比較的少ない事からここでは参考までに記しておきます。

正接関数の加法定理

正接関数の加法定理の式は次の通りです: $$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$$ $$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}$$

これらの式は、正弦関数と余弦関数の加法定理が成立するという前提で示されます。

$$\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cos B +\cos A\sin B}{\cos A\cos B-\sin A \sin b}=\large{=\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A}{\cos A}\frac{\sin B}{\cos B}}}$$
$$\tan (A-B)=\frac{\sin (A-B)}{\cos (A-B)}=\frac{\sin A \cos B -\cos A\sin B}{\cos A\cos B+\sin A \sin b}=\large{=\frac{\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}}{1+\frac{\sin A}{\cos A}\frac{\sin B}{\cos B}}}$$

このようになる事が根拠であり、
後者の式は tan(-θ)=tanθの関係を前者の式の結果に代入する事でも得られます。

証明

考え方:三角比の範囲の場合
一般角の場合① 余弦 cos (A-B)の式の証明
一般角の場合② 残り3式の導出 

考え方:三角比の範囲の場合

証明はいきなり一般の角度の場合でもできるのですが、まず図形上の考え方を見るために0°~90°の範囲における三角比の中で加法定理が成立する事の説明をしましょう。

図のように単位円の「第1象限」の部分で2つの角度の考えて三角形を作ります。
ここで、2つの角度の差を考えます。図で言うと\(\alpha-\beta\) です。
具体的な角度を入れるなら、例えば60°-15°=45°などを考えています。

その差をとった角度の正弦や余弦をどのように考えるのかというと、図のように点Aから点Bまでの距離をもとの正弦と余弦で表し、さらに△AOBに余弦定理を使用するのです。この時、線分ABの距離は三平方の定理で計算できます。

線分ABの長さは三平方の定理で計算できます。

余弦定理で組み立てた式に三角比の公式 sinθ+cosθ=1 を適用すると、余弦に関する加法定理の関係式cos(A-B)=cosAcosB-sinAsinBが得られるのです。

これはとりあえず0°~90°の範囲の図形的な位置関係から関係式を導出するものですが、じつは三角関数として実数全体の範囲で一般の角度を考える場合でも、基本的な考え方は同じなのです。

  • 2つの角度の2つの三角形を作り、その角度の差によりもう1つの三角形を考える。
  • 三角形は、単位円周上の2点と原点で構成する。
  • 円周上の2点間の距離を三平方の定理で表し、さらに余弦定理を適用する。

この基本的な考え方のもとで証明をしていきます。
尚、その場合だと得られるのは余弦の「差」に関するcos (A-B)の式になりますが、その式が証明されると変数の置き換えで残り3式も証明されるという形になります。

一般角の場合① 余弦 cos (A-B)の式の証明

実数全体を範囲とする拡張された角度(一般角)でも加法定理が成立する事の証明は、一般的には次のように座標上の単位円周上の2点を考えて角度を統一的に扱います。

考え方自体は三角比の範囲の時と同じで、2点の「長さ」(プラスの値)を上手に使うのです。

まず単位円周上の2点(x,y)と(x,y)を考え、
これらの座標を(cosA,sinA)および(cosB,sinB)とおいてもよい事から始めます。
つまり(1,0)から2点まで測った角度をそれぞれAおよびBとしています。

このときの2点の位置関係は、x座標で言うとどちらがどちらよりも大きくても(あるいは等しくても)構わず、むしろどちらの場合でも統一的に扱って証明の計算を進められる事がポイントです。

つまり、鋭角の場合・鈍角の場合・負の角度の場合・・といった場合分けをしなくてもよいという事です。

余弦の場合は、負の角度を代入しても同じ絶対値の正の角度を代入した時と同じ値である事【cos(-θ)=cosθ】もポイントです。結論を言うと、加法定理のうち余弦の cos(A-B)に着目するととうまくいくのです。

単位円周上の2点と原点で作られる三角形に注目します。この時に原点を頂点とする部分の角度はA-Bになります。(これは円周上の2点の位置関係によってプラスの値にもマイナスの値にもなります。)

この三角形に、余弦定理を適用します。余弦定理は辺の長さと1つの余弦に関して、実数全体の範囲の角度で正しい関係式を作ります。

★2点の座標をベクトルと考えて
「ベクトルの長さと内積は回転によって不変だから」・・という論法でやる事も可能です。

2点の長さの出し方は三角比の範囲の時と同じで三平方の定理を使います。(座標上の2点の距離の一般的な計算方法でもあります。)余弦定理で必要なのは2乗の形なので、長さを2乗した形は次のようになります。

(cosA-cosB)+(sinA-sinB)
=cosA+cosB-2cosAcosB+sinA+sinB-2sinAsinB
=2-2cosAcosB-2sinAsinB

【cosA+sinA=1、cosB+sinB=1なのでこのように式が簡単になります。】

他方、三角形の残りの2辺は単位円の半径ですから長さはともに1です。この条件のもとで余弦定理を考えてみると次のようになります。

(cosA-cosB)+(sinA-sinB)=1+1-2・1・1・cos(A-B)
⇔2-2cosAcosB-2sinAsinB=1+1-2cos(A-B)
⇔ cos(A-B)=cosAcosB+sinAsinB

【最後の式変形は両辺にある定数の「2」を消し、さらに両辺をー2で割り整理したものです。】

このように、加法定理のうち余弦の「差の形」のものが成立する事が分かります。この形は2乗の展開式に由来するものというわけです。また、角度の差をとる時に2つの項がプラスで結ばれる理由も証明の過程から比較的明確であるかと思います。2点間の距離の計算による2乗の展開式由来なので同符号というわけです。

この場合の角度には、三角関数の変数としての実数全体の範囲の任意の角度を代入しても成立します。これは余弦定理が実数全体の範囲で角度を代入した場合にも正しい関係式を作っているためです。円周上の2点と原点が同一直線上に並んで「三角形を作らない」場合にでも点同士の距離と余弦関数の値の正しい関係を表しています。

一般角の場合② 残り3式の導出

正弦と余弦に関する加法定理の残り3式はどのように導出するのかというと、それらはcos(A-B)=cosAcosB+sinAsinBをもとに出すのです。

まず、Bがプラスでマイナスであってもこの関係式は成立しますから、Bの部分を-Bに置き換えるとcos(A+B)=cosAcos(-B)+sinAsin(-B)=cosAcosB-sinAsinBとなります。

正弦のほうはどうするのかというと、BをB+\(\pi\)/2に置き換えます。

cos(A+B+\(\pi\)/2)=cosAcos(B+\(\pi\)/2)-sinAsin(B+\(\pi\)/2)=-cosAsinB-sinAcosB

他方で cos(A+B+\(\pi\)/2)=-sin(A+B) でもあるので、

-sin(A+B)=-cosAsinB-sinAcosB⇔sin(A+B)=sinAcosB+cosAsinB

正弦の残り1式は、sin(A+B) のBを-Bに置き換えて得ます。sin(A+B)=sinAcos(-B)+cosAsin(-B)=sinAcosB-cosAsinB です。

これによって、正弦関数と余弦関数の加法定理4式が確かに成立する事になります。

参考までに、三角比の範囲の場合に cos(A-B)のBを-Bに置き換えてcos (A+B)にした場合の図形的意味は次図のようになります。これを一般化しているのが、三角関数で考えた一般の角度での加法定理です。単位円周上で考えれば、同様の図形的な位置関係を必ず作る事ができます。

三角比の範囲で考えた場合の cos(A+B)の図形的な解釈の1つです。三角関数の加法定理において角度部分を x → -x に置き換える操作は単に形式上そうできるというだけではなく、図形上の意味にも必ず対応しています。

具体例・応用例・覚え方

具体例についても見てみましょう。

例えば、90°=60°+30°、90°=45°+45°といった関係を加法定理は正しく表すでしょうか?

$$\sin\left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{6}\right)+\cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{6}\right)$$

$$=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{2}+\frac{1}{2}\cdot\frac{1}{2}=\frac{3}{4}+\frac{1}{4}=1$$

$$\sin\left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{2}\right)=1 で一致します。$$

45°のほうでやってみても同じで、

$$\sin\left(\frac{\pi}{4}+\frac{\pi}{4}\right)=\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right)+\cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}=\frac{1}{2}+\frac{1}{2}=1$$

こういう形で成立するわけです。

120°-60°=60°の場合を今度は余弦のほうでやってみると、

$$\cos\left(\frac{2\pi}{3}-\frac{\pi}{3}\right)=\cos\left(\frac{2\pi}{3}\right)\cos\left(\frac{\pi}{3}\right)+\sin\left(\frac{2\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$$

$$=-\frac{1}{2}\cdot \frac{1}{2}+\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{2}=-\frac{1}{4}+\frac{3}{4}=\frac{1}{2}=\cos\left(\frac{\pi}{3}\right)$$

加法定理が成立するなら、既知の三角関数の値を使って例えば45°-30°=15°といった半端な角度の正弦や余弦の値も分かるはずです。「15°」における正弦の値を加法定理で計算すると次のようになります。

$$\sin\left(\frac{\pi}{12}\right)=\sin\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right)-\cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\cdot\frac{1}{2}=\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}$$

この計算値は約 0.2588 で、マクローリン展開で計算した値にほぼ一致します。

45°+45°や60°+60°のような場合は、より一般的にAに対する2Aとして「倍角の公式」の形にして捉える事も可能です。和積の公式や積和の公式も、加法定理の幾つかの式を組み合わせて変形したものです。

三角関数の微分公式の証明でも、加法定理を使用して計算を進めます。

加法定理の式の形の「覚え方」としては、複素数を利用する方法もあります。【これらは「説明」や「覚え方」としては有用ですが「証明」にはならないので注意。】

複素数の場合、指数関数表示(オイラーの公式)からei(θ+φ)=eiθiφですが、
cos(θ+φ)+isin(θ+φ)=(cosθ+isinθ)(cosφ+isinφ)
=cosθcosφ-sinθsinφ+i(sinθcosφ+cosθsinφ)
を意味しますから、実部と虚部の値を比較すれば
cos(θ+φ)=cosθcosφ-sinθsinφ、sin(θ+φ)=sinθcosφ+cosθsinφ
の関係が成立している事が分かります。
これらは三角関数の加法定理の内容そのものです。

(これはド・モアブルの定理で考えても同じです。
ただし、その定理の証明に加法定理が使用されているので、「加法定理の証明」としては
適切とは言えないのです。)

外積を使った証明

加法定理の別の証明方法として、3次元ベクトルの外積(ベクトル積、クロス積)を使う方法があります。

外積ベクトルは3次元のベクトルに対して考えるものですが、z=0としたxy平面上の2つのベクトルに対して考える事は一応可能です。

そこで、次の2つのベクトルを考えます。
(角度θとφはプラスの値とします。ベクトルの大きさはどちらも1である事にも注意。)

$$\overrightarrow{a}=\cos\theta\hspace{2pt}\overrightarrow{e_1}+\sin\theta\hspace{2pt}\overrightarrow{e_2},\hspace{10pt}\overrightarrow{b}=\cos\phi\hspace{2pt}\overrightarrow{e_1}-\sin\phi\hspace{2pt}\overrightarrow{e_2}$$

$$\overrightarrow{e_1}=(1,0,0),\hspace{10pt}\overrightarrow{e_2}=(0,1,0),\hspace{10pt}(本当は\overrightarrow{e_3}=(0,0,1)もある。)$$

負の角度を使っても同じ事ですが、ここではプラスの値の角度の正弦にマイナス符号をつけた形で座標を表すとします。

そこで外積ベクトルを考えてみましょう。(外積について成立する公式を使用します。)

$$\overrightarrow{a}×\overrightarrow{b}=(\cos\theta\hspace{2pt}\overrightarrow{e_1}+\sin\theta\hspace{2pt}\overrightarrow{e_2})×(\cos\phi\hspace{2pt}\overrightarrow{e_1}-\sin\phi\hspace{2pt}\overrightarrow{e_2})$$

$$=-\cos\theta\sin\phi(\overrightarrow{e_1}×\overrightarrow{e_2})+\sin\theta\cos\phi(\overrightarrow{e_2}×\overrightarrow{e_1})$$

$$=-\cos\theta\sin\phi(\overrightarrow{e_1}×\overrightarrow{e_2})-\sin\theta\cos\phi(\overrightarrow{e_1}×\overrightarrow{e_2})$$

$$=-(\cos\theta\sin\phi+\sin\theta\cos\phi)(\overrightarrow{e_1}×\overrightarrow{e_2})$$

$$=(\cos\theta\sin\phi+\sin\theta\cos\phi)(-\overrightarrow{e_3})$$

他方で、この外積ベクトルは定義通りに考えれば向きは「z軸のマイナス方向」であり、
大きさは\(|\overrightarrow{a}||\overrightarrow{b}|\sin(\theta+\phi)=\sin(\theta+\phi)\) です。

という事は、

$$\overrightarrow{a}×\overrightarrow{b}=\sin(\theta+\phi)\hspace{2pt}(-\overrightarrow{e_3})$$

という事でもありますから、2つの結果を等号で結べます。

$$(\cos\theta\sin\phi+\sin\theta\cos\phi)(-\overrightarrow{e_3})=\sin(\theta+\phi)(-\overrightarrow{e_3})$$

$$よって、\sin\theta\cos\phi+\cos\theta\sin\phi=\sin(\theta+\phi)【加法定理の証明終り】$$

この場合は、正弦の加法定理が直接示されています。(証明の最後の箇所では見やすいように項の順番だけ入れ替えています。)これを使って残りの3式も証明が可能です。

ここで行った計算は一体何なのかというと、前半で記した証明が三角形の「辺の長さ」を考えたのに対して、この外積を使った証明では平行四辺形の「面積」(三角形でも可能)を使ったという事です。本質的には、座標を使って証明するという同じ部類の2つの証明法と言えます。

余弦定理

余弦定理とは、三角形の3辺と1つの角の余弦について成立する関係式です。
(英:cosine rule)

特別な場合として余弦定理を直角に対して適用すると三平方の定理の形になります。
(ただし、余弦定理一般を証明するには普通は三平方の定理を使います。)

三角比の余弦(コサイン)と三角関数の余弦関数については別途に述べています。

定理の内容

余弦定理の内容は次のようなものです。

余弦定理

三角形ABCの辺の長さをBC=a、AC=b、AB=cとして、
∠BAC=θ(長さaの辺BCの対角)とする時、次の関係式が成立します。 $$a^2=b^2+c^2-2bc\cos \theta$$ θは鋭角でも鈍角でも成立し、
θ が直角の時には三平方の定理a=b+cになります。
また、θ=0、\(\pi\)の場合は3点が1直線上に並んでいる場合であり、
座標上などで角度に向きをつけている場合には負の角度を代入しても正しい関係式を表します。

三角形のある1辺の具体的な値を知りたい時には「2辺の長さと1つの角度の『余弦』の値が分かれば計算は可能である」という事が、余弦定理の意味と使い方です。

定理の内容

余弦定理を証明する一番シンプルな方法は三平方の定理を使う方法です。(三平方の定理は相似条件・合同条件といった条件だけで証明できます。)

ここでは、対象の角の大きさが鋭角か鈍角で場合分けをして証明します。
式変形も含めてやや詳しく説明していますが、要するに三平方の定理を適切に適用すると関係式を導出できるというのが証明の流れになります。

証明①:鋭角の場合

まず対象の角度の大きさが鋭角の場合です。

この場合、もう1つの角についても鋭角か鈍角かで場合分けしますが、得られる結果は同じになります。どちらの場合でも、三角比の関係を使って上手に直角三角形の辺の関係を作ります。

下図で、∠BAC=θが鋭角のもとで、∠ABCが鋭角か鈍角かを見ます。

∠ABCが鋭角の場合(図の上側)、直角三角形を作るように線分ABを延長して点Hをとります。この時、直角三角形である△ACHの底辺部分AHの長さは余弦を使ってbcosθで表せます。

鋭角の場合の証明

他方、高さ部分もCH=hは正弦を使ってh=bsinθと表せますが、単純にこれに三平方の定理を適用してもじつはうまくいきません。そこで、△ACHだけでなく、△BHCも直角三角形である事に注目します。すると、BH=bcosθ-cになる事に注するとうまくいきます。

BH+h=a ⇔ (bcosθ-c)+h=a

他方、△ACHについてAH=bcosθ 、CH=hのもとで三平方の定理を適用します。

(bcosθ)+h=b ⇔ h=b-bcosθ

つまり、未知数のhは代入して消す事ができます。

(bcosθ-c)+h=a に h=b-bcosθを代入すると、bcosθ-2bccosθ+c+b-bcosθ=a
⇔ a=b+c-2bccosθ 【bcosθの項が消えてあとは順番だけ整理しただけです。】

つまりこの場合では余弦定理が確かに成立する事になります。

次に∠BAC=θと∠ABCが両方とも鋭角の場合(図の下側)には、点Cから辺ABに垂線を下ろせます。その垂線の足をHとおきます。この場合も先ほどとやり方自体は同じで、△AHCと△CHBの2つが直角三角形になり、CH=hとして余弦と組み合わせて三平方の定理で関係式を作ります。

AH=bcosθ、CH=h、BH=c-AH=c-bcosθ のもとで、

(bcosθ)+h=b かつ (c-bcosθ)+h=a 

前者のほうの式を後者のほうの式にhを代入して消します。
(c-bcosθ)+b-(bcosθ)=a ⇔ a=b+c-2bccosθ

よって、この場合でも余弦定理が確かに成立する事になります。

証明②:鈍角の場合

では、∠BACが鈍角の場合はどうするかというと、この場合には余弦に鈍角を入れる必要があるので三角関数として余弦を考える必要があります。結論を先に言うとcos(x+\(\pi\)/2)=-sinxの公式を使います。この関係を認めるうえで、余弦定理の形で辺の長さの関係を表せるという事です。

この時、鋭角である角度 φ を使って、θ = φ+90°と表すとこの時の証明はしやすいです。ただ、三角関数を使うので、ここで角度は弧度法で表してθ = φ+\(\pi\)/2と書く事にします。

この時、図のように△ABPが直角三角形になるように便宜上の点PをBC上において、∠ABPが直角、∠PBC=φ(鋭角)であると捉えます。(図の位置関係はθが鋭角の場合と少し変えて描いています。)

鈍角の場合の証明

ここで、θ=∠PBC+∠ABP=φ+\(\pi\)/2です。この時、ABを延長しCからその延長線に垂線を下ろして垂線の足をHとします。

平行線の錯角の関係により∠BHC=∠PBC=φである事に注意し、△BHCは直角三角形なのでBH=bsinφ、CH=bcosφと表せます。ここで△AHCも直角三角形なので三平方の定理で関係式を作ると次のようになります。

(c+bsinφ)+(bcosφ)=a ⇔ c+2bcsinφ+bsinφ+bcosφ=a

ここでまず、sinφ+cosφ=1の公式により
sinφ+bcosφ=b(sinφ+cosφ)=b

すると、c+2bcsinφ+b=a

「余弦」定理の証明なのに正弦が出てきてしまったという話ですが、cosθ = cos(φ+\(\pi\)/2)=-sinφ つまりsinφ=-cosθとなるので、a=b+c-2bccosθ となり、この場合も余弦定理が成立します。

これは三角関数の定義に従って余弦の値を決める時に成り立つもので、具体的な鈍角の値を余弦関数に入れると必ず負の値ですから、符号は必ず反転してプラスになる事に注意する必要もあります。

例えば120°(2\(\pi\)/3 [rad]) を角度として代入するなら、
=b+c-2bc・(-1/2)=b+c+bc のようになります。

理解の仕方としては、θが鋭角であろうと鈍角であろうと、三角関数の定義に従って余弦の値を考える限りは気にせずに余弦定理を使って計算をしてよい、という事になります。

角度の範囲が実数全体の場合

三角関数の定義域(実数全体)を当てはめるのであれば、上記以外の場合にはどうなるでしょう?

まず鋭角でも鈍角でもない角度として「直角」がありますが、これは冒頭でも触れた通り三平方の定理そのものになりますので、別途に証明できて成立します。

次に、0と180°(\(\pi\))の場合ですが、仮に成立するとすると次のような式になります。

θ=0とき、a=b+c-2bc=(b-c) より、a=b-cまたはc-b

θ=\(\pi\)のとき、a=b+c+2bc=(b+c) より、a=b+c

(もちろん、a≧0、b≧0、c≧0という条件のもとでこうなります。)

問題はこれに図形的な意味があるかという事ですが、じつは確かにあります。これらはいずれも、3点A、B,Cが一直線上に並んだ時にあり得る関係式です。そのため、これらの角度においては「三角形はできない」という図形的な意味付けをするのであれば、各点間の距離を表す式として余弦定理は確かに成立すると言えます。

一般の角度の場合
余弦定理を使う時には、通常の平面幾何的な意味では0°<θ<180°の範囲だけを考えればよいのですが、図形的な意味を拡張してそれ以外の値を代入する事も可能です。

では、180°(\(\pi\))を超える場合はどのように考えられるでしょう。この場合、三角関数の考え方では負の角度が0~-\(\pi\)の場合と同じなので負の角度の場合を考えると、余弦関数の値はマイナス符号をつけない正の値の時と同じ値です。cos(-θ)=cosθと、三角関数では定義されます。

このような場合に図形上での意味としては、座標やベクトルの関係において角度に反時計回り・時計回りの区別をつける時の事が想定できます。しかしその場合でも「2点間の距離」自体は正の値として考えます。例えば座標上でx軸に平行な直線に関して図形を反転させた場合に、座標の符号が変わる事はあっても各点を結ぶ辺の「長さ」自体は変わりません。

この事が、負の値を角度として適用した場合の図形的な意味になります。0≦θ≦\(\pi\) の場合には余弦定理は適用可能ですから、-θを考えた時には cos(-θ)=cosθ により角度が正の値の時と全く同じ辺の長さの関係式になります。これが、「底辺を軸として三角形を反転させた時にも辺の『長さ』自体については変わらない」事に対応するのです。この意味において、座標上などで角度に向きをつける場合でも、辺の長さの関係だけを問題にする時には余弦定理に負の角度を入れても正しく関係式を作れるという事です。

★言い換えると、余弦定理だけからは「正負の符号も含めた」意味での座標の位置関係を確定させる事はできず、基本的には長さについてのみ計算可能な関係式であるとも言えます。これは三平方の定理と同様の性質です。

\(\pi\)を超える角度の図形的な意味は負の角度の場合と同じとすると、これも余弦定理の角度部分に代入しても三角形の辺の長さの関係は正しく表されている事になります。

三角関数の周期性により、360°(2\(\pi\))を超える角度では1周して全く同じ点に戻るという図形的な解釈のもとでは、それらの角度を代入したとしても同じく三角形の辺の長さの関係は同じく正しく表されます。

以上から、余弦定理は一般的な鋭角、鈍角、直角の三角形を考える場合にも、図形上の適切な意味付けを与える限りにおいては実数全体を余弦の角度として代入しても成立する関係式である、という事になります。

正弦定理

正弦定理は、三角形の辺の長さおよび外接円の半径(あるいは直径)と、三角比の正弦の間に成立する関係式です。(英:sine rule)

三角比を使うという事で高校で教えられる事が多いですが、内容としてはどちらかというと平面の図形問題の色彩が濃く、中学校で教わる平面幾何の内容に近いかもしれません。

定理の内容

定理の内容は次の通りです。

正弦定理

三角形ABCでBC=a、AC=b、AB=cとして、
それらの対角の大きさについて∠BAC=A、∠ABC=C、∠ACB=Cとします。
また、△ABCの外接円の半径をRとすると、次の関係式が成立します: $$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$

このように1つの式で表されていますが、2つのグループに分かれていると考える事もできます。1つは辺の長さと正弦の関係、もう1つは辺の長さと正弦と外接円の半径の関係です。(後者については証明を見ると分かるように図形上の意味として肝心なのは「直径」との関係です。)

ここでは2つの部分に分けますが、2つ目のほうを使って最初から全て証明する事も可能です。

証明①:三角形の辺と正弦に関する部分

まず、1つ目の辺の長さと正弦の関係です。
定理の中で言うと、とりあえず外接円の部分は無視した次の部分になります。

$$まずこれを証明します:\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$

2つの等号に関して一度に示す事はできないので、1つずつ証明して最後に全部を結ぶという形になります。

これは、一言で言うと、三角形ABCの「面積」を3通りの方法で表してみると成立する事が分かる関係式です。本来の「面積」の形の等号関係は次のようになります。

$$\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}$$

発想はじつに単純で、三角形の面積「底辺×高さ÷2」において、底辺を辺AB、BC、ACのそれぞれとした場合に面積の計算をしてみようという、それだけのものです。

★細かい事を言いますと、厳密にはその場合に「どの辺を底辺にとったとしても1つの三角形の『面積』は1つの値しかとらない」という事も自明ではなく要証明です。
しかしその事は平面幾何で証明済のものとして、ここでは話を進めます。
(三角形の相似関係を使えばよく、証明するとしてもそれほど難しくはありません。)
また、証明の順番は逆になってしまいますが、正弦定理の後半部分を先に証明すればこの面積に関する事項も証明する事はできます。どの方法でも間違いではありません。

面積による証明

まず。底辺をAC=aとした時です。面積を出すには高さが必要ですが、これを三角比の関係を使って表します。AB=cの斜辺と∠ABC=Bの正弦によって、高さはcsinBになります。これで、面積の1つが表されるわけです。

$$S=\frac{ac\sin B}{2}$$

この時、∠ABC=Bとは逆側の角度を使って、高さの部分をbsinCと表す事もできます。
これは、あとで使います。
最初からそちらのほうだけで面積を表すとどうなってしまうのかというと、じつはa(bsinC)÷2=b(asinC)÷2の関係により、「bを底辺とした場合に表わした三角形の面積」に等しい事になります。そのため、最初からこちらの式を使って進めても結局証明はできます。

底辺をAC=bの部分とみなす場合には、高さがcsinAになります。これで面積の2つ目の表し方です。

$$S=\frac{bc\sin A}{2}$$

ここで、いったん2つの式を等号で結びます。
もちろん、同じ面積Sを表すので等号で結べます。

$$\frac{ac\sin B}{2}=\frac{bc\sin A}{2}$$

この式で、両辺でcと1/2は共通しているので掛け算割り算で「消せる」事になり、さらに正弦の部分を両辺で割ると正弦定理の関係式の1つになります。

$$\frac{ac\sin B}{2}=\frac{bc\sin A}{2}\Leftrightarrow a\sin B=b\sin A$$

$$\Leftrightarrow\frac{a}{\sin A}=\frac{b}{\sin B}$$

ここでもう1つ関係式がほしいわけですが、∠ACB=Cに関する正弦が足りないので、再びBC=aを底辺とする場合に戻って、高さを今度はbsinCと考えます。

$$するとS=\frac{ab\sin C}{2}とも表せる事により、\frac{ab\sin C}{2}=\frac{bc\sin A}{2}$$

$$\Leftrightarrow\frac{a}{\sin A}=\frac{c}{\sin C}$$

これで2つの等号関係を結べます。

$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}【証明終り】$$

理解の仕方としては、図を見てもっと単純に直観的にという事でもよいと思います。

証明②:外接円に関わる部分

次に、正弦定理の内容のうち、外接円の半径を含むほうの部分です。

一体どこから円が関係するのかと思われるかもしれませんが、じつはこの後半部分のほうが、図形的な特徴に気付くと直ちに証明されるので簡単なのです。

この場合には面積を考える必要はなく、三角比の関係だけを使います。

まず外接円を考えるのですが、この時に三角形の1つの頂点から「円の中心を通るように」直線を引きます。それが円周の向かい側とぶつかる点に注目します。

図では、点Cから中心に向かって直線を引き、円周との交点をA’ としています。

円周角の定理による証明
△ABCの外接円の半径をRとしています。補助線を引いて点A’ を円周上にとります。

すると、まず円周角の定理により、新しくできた図の∠CA’Bの大きさは∠CAB=Aと同じ大きさです。(弧CBの円周角なので。)よって∠CA’B=Aです。

また、図のCA’ は円の直径ですから、その円周角について∠A’BC=90° となります。(これも本質的には円周角の定理によるものです。)

という事は、Aという大きさの角を含む直角三角形を考える事ができます。斜辺は円の直径(2R)で、辺BCの長さがaですから両者を三角比の関係で結べます。じつは、これで1つの関係の証明が終りです。

$$三角比の関係により、2R\sin A=a\Leftrightarrow \frac{a}{\sin A}=2R$$

同様にして、頂点Aや頂点Bからも補助線を中心に向かって引く事で残り2つの関係式も得られますが、a/(sinA)=b/(sinB)=C/(sinC)を既に証明しているので、これで正弦定理の証明完了としても可です。

$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}と合わせて、\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R【証明終り】$$

★こちらのほうの定理の後半の内容について最初に証明する事で前半部分も一度に証明する事もできます。
その場合には頂点と中心を通る補助線を3パターン全て作って、
a/(sinA)=2Rかつb/(sinB)=2RかつC/(sinC)=2Rよりa/(sinA)=b/(sinB)=C/(sinC)であるとして、定理の前半部分もまとめて証明できます。
手間としては、どちらの方法でもあまり変わらないと思います。

この記事では証明を詳しく記しましたが、理解としてはもっと直感的でよいと思います。

さてこの「正弦定理」、別途に「余弦定理」というものがあるので対として教科書の中で教えられる事も多いのですが、大学入試での出題の可能性を除くと重要度はやや低いものがあるかもしれません。

証明の方法から見ても分かる通り、正弦定理とは本質的には三角形の面積に関する平面幾何の基本事項や、円周角の定理から直結する関係式です。そのためこの定理は直接的というよりは、三角形に関わる多くの事項と間接的に関わっているものと言えるかもしれません。

弧度法とラジアン

弧度法とは、半径1の円の円弧の長さ(扇形の周部分)によって角度を表す方法を言います。
基本的には、円周率の有理数倍によって使って表す事が多いです。

弧度法で表した角度には単位をつけない事も多いですが、「ラジアン」[rad]という単位を記す事もあります。(英:radian)

定義・考え方と重要ポイント

弧度法は次のように定義され、度数法との換算の仕方も合わせて記すと次のようになります。

弧度法とラジアン

半径1の円の円弧の長さが Y 、その円弧を得る扇形の中心角の大きさが度数法で X ° である時、
円弧の長さ Y を角度そのものとして扱う方法を弧度法と言い、
特に単位をつける場合には rad (ラジアン)を使う。
Y [rad] と X [°]の換算については次の関係が成立する:
$$Y=\frac{\pi X}{180}=\frac{2\pi X}{360}$$

この角度の表し方の詳しい意味と、換算の式の出し方についての易しい説明を以下にしていきます。

円周の長さは直径と円周率の積です。この時に半径(および直径)が一定であれば円周の長さも一定です。

円周と半径の関係 円の半径をrとすれば円周の長さは2\(\pi\)r
(円周の長さ)=(直径)×(円周率)という事です。

まず、簡単な例として「半円」を考えてみましょう。これの「弧」の長さを考えます。
当然ながら、半円の弧の長さは「全体の円周の長さの半分」です。
1/3円であれば弧の長さも1/3です。1/n円であれば弧の長さは全体の1/nです。

ところで一般の扇形の面積や円弧部分の周の長さを考える時は、例えば中心角が60°の扇形は、
全体に対して60/360=1/6 の割合の面積や弧の長さを持つと判定するのでした。
全体を360°として、60°という部分を考えています。
これは、角度が分かっているので円弧の長さも分かるというわけです。

そこで、弧度法の基本的な考え方は次のようなものです。

「逆に、『弧の長さ』が仮に分かってるとすれば『角度』も確定するではないか?」

半径1の円の60°の扇形の弧の長さは\(\pi\)/3ですが、言い換えると弧の長さが\(\pi\)/3であれば
角度も「全体を6分割する」大きさである事は確定しているというわけです。

度数法の場合は360°に対して何度を比較しますが、弧度法では半径1の円の全体の円周の長さ2\(\pi\)に対して、扇形の弧の長さを比較するのです。

この観点では角度を「全体の何割なのか」という視点だけで考えているとも言えます。

考え方の説明図

換算の式の考え方と導出

弧度法と度数法の換算については、冒頭で記しましたように一応の「公式」はありますが、
基本的には部分が全体の何割かという事を考えているだけなのです。

例えば直角であれば全体の1/4ですから度数法であれば90°、
弧度法なら2\(\pi\)の1/4の\(\pi\)/2であるというわけです。
360/4=90、2\(\pi\)/4=\(\pi\)/2という計算です。
(あるいは半円の半分と考えて180/2、\(\pi\)÷2)

そもそも度数法にしても360という数字について、数学的に絶対にこの値でないと支障があるのかというとそうではありません。例えば極端な話、倍の数字の720を全体としてもよいのです。角度を測るツールとしては何でもよいわけです。その事に気付くと、弧度法というのは全然難しいものではないのです。

とすると、弧度法と度数法の換算も、全体の何割かを把握している事が本質であるわけです。この時、必要に応じて直角や2直角の何割かという事を考えたほうが計算は早い場合はあります。

例えば30°であれば、2直角180°の1/6ですから、弧度法だと半径1の半円の弧の1/6、つまり\(\pi\)/6に等しい角度という事です。

同じく45°なら2直角の1/4なので、弧度法だと\(\pi\)/4です。
前述の90°なら直角ですから弧度法では\(\pi\)/2と直ちに考える事もできます。

120°のような場合は、2直角の2/3ですから(60°の2倍)、弧度法では2\(\pi\)/3なのです。

このように考えると、じつに簡単なものである事に気付くと思います。

37°のような半端な角度の場合も考え方は同じなのです。要するに、全体の何割かを考えればよいのです。90°未満の角度の場合は180°に対する割合を考えたほうが簡単でしょう。
すると、この角度を弧度法で表すなら \(\pi\) の37/180倍です。$$37°は、弧度法では\pi\cdot\frac{37}{180}=\frac{37\pi}{180}になります。$$

これが、弧度法と度数法の換算の式の意味です。改めて記すと次のようになります。

弧度法と度数法の換算の公式 度数法で X ° の角度を弧度法の Y [rad] で表す場合、関係は次式になります。
$$Y=\pi\cdot \frac{X}{180}=\frac{\pi X}{180} $$ $$もちろんこれは Y=\frac{2\pi X}{360}としても同じです。$$ 逆に弧度法で表された角度 Y [rad] によって度数法の X ° は次のように表されます。
$$X=180\cdot \frac{Y}{\pi}=\frac{180Y}{\pi}$$ $$これはX=360\cdot \frac{Y}{2\pi}=\frac{360Y}{2\pi}としても同じです。$$
角度の換算の式の説明図

この考え方が分かっていると、仮に次のような意地の悪い問題が大学入試(センター試験等)で仮に問われたとしても迷わないでしょう。

■問い:「弧度法の1ラジアンを度数法で表すならいくらか。」

そもそも円周率は無理数なのだから弧度法の角度をわざわざ有理数である「1」で表す意味があまり無いとも言えるのですが、この手の問題では理解度を試すためにわざと問うているという事でしょう。

1ラジアンですから、2直角に対する割合は1/\(\pi\)です。
したがって解答は、180×(1/\(\pi\))=180÷\(\pi\) ≒ 57.3 [°] です。【解答】

考え方としては\(\pi\)/4ラジアンが2直角\(\pi\)に対する1/4、
あるいは直角の半分だから「45°」と判定する事と同じなのです。

一般の円の円弧の長さ・扇形の面積との関係

さて、弧度法で表した角度は「半径1」の円の円弧の長さです。

あくまで半径1の場合ですから、別の半径であれば円周の長さも面積も変わります。

しかし、円周の長さは「半径(あるいは直径)に比例する」のでしたから、
仮に弧度法で表された角度が分かっているのであれば、一般の扇形の円弧の長さは「弧度法の角度[rad]を半径倍したもの」という事になります。

これは、「半径Rの扇形の円弧の長さ」=「『半径1の扇形の円弧の長さ』× R」という簡単な関係なのです。

この意味において、次の公式が成立します。

一般の扇形の円弧の長さ 半径 R の扇形の中心角について弧度法での角度 θ [rad] が分かっている時、
円弧の長さ L は次のように表されます。
$$L=R\theta$$ ★基本的には角度 θ [rad] は、例えば\(\pi\)/4のような形で判明しているという事に注意しましょう。
つまり、決して「円周率が消えている」という事ではありません。
弧度法での角度があらかじめ分かっているとは、基本的には、あくまで全体に対する何割の扇形であるかが判明しているという意味です。確かに仮に弧度法の角度を無理やり有理数で表せば見かけ上円弧の長さから円周率が消えますが、これは円周全体に占める比を有理数で表せないという「長さ」になってしまうのです。

面積についても考え方は同様です。

半径1の円の面積は1×1×\(\pi\)=\(\pi\)で、
弧度法の角度が θ であれば θ/(2\(\pi\)) の割合が扇形の面積です。

$$半径1の扇形の面積:\pi\cdot\frac{\theta}{2\pi}=\frac{\theta}{2}$$

ここで1/2というのが出てくるのは、円周の長さは直径と円周率との積、円の面積は半径の2乗と円周率との積で、弧度法の角度は円周と円弧の関係を表すものなので直径と半径のずれがあるためです。

扇形の半径がRに変わった時には面積はさらにR倍になります。

その意味において次の関係式が成立します。

一般の扇形の面積 半径 R の扇形の中心角について弧度法での角度 θ [rad] が分かっている時、
扇形の面積 S は次のように表されます。
$$S=\frac{R^2\theta}{2}$$ ★ここで再び、円周率は基本的には弧度法で表された角度に含まれているのです。
分母の2がつくのかつかないのか分からなくなった時には、半径1の2\(\pi\) [rad] を考えてみるとよいでしょう。この時の扇形は円そのものですから、面積は\(\pi\)です。上記の式に代入しても同じ結果になる事が分かります。

三角関数の変数としての角度は弧度法で表すのが基本です。特に三角関数の微積分を考える時には、度数法を使うと問題が発生するので必ず弧度法の角度を変数として扱います。

三角関数の定義・基本公式【周期関数】

三角関数とは、図形上の三角比である正弦、余弦、正接の角度部分を拡張して定義域を実数全体に広げた正弦関数余弦関数正接関数を言います。(正接関数は \(\pi\)/2の奇数倍を定義域から除きます。 )
三角関数の変数は「実数値」であり、度数法ではなく弧度法で表します。(※度数法のまま三角関数を扱っても支障はない場合も多くあります。ただし微積分を扱う時には特に問題が発生するので注意も必要です。)

表記方法自体は三角比の場合と同じで、変数部分の記号としてxを使う事が多いです。
正弦関数 y=sinx 余弦関数 y=cosx 正接関数 y=tanx

三角関数は、代表的な周期関数の1つでもあります。これは、同じ関数の値が等間隔の変数ごとに繰り返し現れるというもので、「1回転」\(2\pi\) ごとの周期性を示します。(比例係数を使う事で、その他の値の周期とする事もできます。)

指数関数や対数関数と同じく、高校で扱われる重要な関数である初等関数の1つです。

三角比との違いは、数学的に厳密な違いが定義されているわけではありませんが、三角比というのはどちらかというと平面の図形に対して0°~180°の範囲で適用するものであって、三角関数は図形問題というよりは周期関数としての性質を強調して使う事が多いです。

定義域の拡張・・角度を拡張する

三角関数の考え方は大体において三角比と同じ考え方を適用できますが、正弦関数等の変数は実数全体です。この場合、単純な直角三角形の角度としては変になる場合はどのように解釈するのか?を説明します。
基本となるのは正弦関数と余弦関数なので、まずはそれらについて見ていきます。
(正接関数についてはそれらの割り算で表されます。)

「0度」と負の角度 ■ \(\pi\)/2【90°】以上の角度 ■ 2\(\pi\)【360°】以上の角度【周期性】 

「0度」と負の角度

直角三角形の直角以外の部分の角度は、「もちろん0°より大きく90°より小さい範囲」です。
弧度法だと 0 < x < \(\pi\)/2です。そうでないと三角形ができないためです。
しかし三角関数では、この変数の範囲(定義域)を拡張していきます。

まず変数が0以下の場合はどうするのでしょうか?結論を言うと次のようにします。

変数が0以下の場合の三角関数
  1. sin 0 = 0, sin(-x)=-sinx と定義する。
  2. cos 0 = 1, cos(-x)= cosx と定義する。
  3. tan 0 = 0, tan(-x)=-tanx となる。【tanx=(sinx)/(cosx)と定義するため。】

ここでx>0であれば-xは負の値で、x<0であれば-xは正の値です。
後述しますがどちらの場合でも統一的にこれらの関係式を適用できます。

これは図で言うと、三角形を底辺に関して対照的にひっくり返したものを考えて「負の角度」としています。角度の方向にも向きを付けて、反時計回りをプラス、時計回りにはマイナスの符号をつけるという意味です。
そのうえで正弦については「下向き」の高さ、余弦については変わらず同じ値と決めています。

負の角度

まずx=0の場合には次のようにしていす。

角度0の場合の定義

x=0とした時の y=sin x と y=cosx の値の定義です。

  • 正弦関数の場合:sin 0 =0 と定義する。
  • 余弦関数の場合:cos 0 =1 と定義する。

これらは「定義」であるとしか言いようがない面もありますが、「なめらかな形の連続関数」になるような定義としての1つの要請であるとも言えるのです。
三角比の範囲においても、角度を0に近づけると正弦の値は0に近づき、余弦の値は1に近づいていくのでx=0において sin 0 = 0, cos 0 = 1 であれば、その「点」において関数は「連続」になるという事です。さらにそこから、なめらかな形で負の部分に続いていく事も考えます。(微分可能になるように。)

また、周期関数になるという要請も加えると、定義の仕方も段々と限定されてくるわけです。意味としては、三角関数における「角度」の拡張の定義にはそのような意味があると捉える事ができるのです。
直交座標上にxを変数とした三角関数のグラフを描くと、ちょうどx=0で正弦関数は原点に対して点対称、余弦関数はy軸に関して軸対称の形になります。

負の角度

ここでは表記としてはxがプラス符号であるとして、それにマイナスをつけた「-x」を負の数として扱っています。

  • 正弦関数の場合:sin(-x)= -sinx【0から始まり-1に向けて関数の値は減少していく】
  • 余弦関数の場合:cos(-x)= cosx【1から始まり0に向けて関数の値は減少していく】

$$例えば\hspace{10pt}\sin\left(-\frac{\pi}{4}\right)=-\sin\frac{\pi}{4}=-\frac{1}{\sqrt{2}},\hspace{10pt}\cos\left(-\frac{\pi}{4}\right)=\cos\frac{\pi}{4}=\frac{1}{\sqrt{2}}$$ 正弦の場合と余弦の場合ともに、符号の関係にだけ注意すればよいという事になります。
値の絶対値については変数がプラスの場合のものをそのまま流用するという定義であるからです。
正弦の場合「0から減少していく」、余弦の場合「(最大値)1から減少していく」事を考えると理解はしやすいと思います。

尚、ここでは sin(-x)= -sinx において「xは正の値」を考えて変数が負の場合の説明をしましたが、
そこでx自体に「負の値」・・例えば-\(\pi\)/4を入れたとすると$$\sin\left\{-\left(-\frac{\pi}{4}\right)\right\}=\sin\frac{\pi}{4}=-\left(-\sin\frac{\pi}{4}\right)=-\sin\left(-\frac{\pi}{4}\right)$$となり、式の整合性はとれています。余弦関数の場合も同様に整合性がとれます。つまり一般的に、変数部分にマイナス符号がついている時には、上記の定義式の関係を使って機械的に計算してもよいという事です。

\(\pi\)/2【90°】以上の角度

では、変数がプラスの値の時に戻って、変数が\(\pi\)/2以上の場合はどうするのでしょう?
通常の図形問題でも90°以上の角度は考えますが、直角三角形の直角にはそのままでは適用できません。

三角関数において、定義域を\(\pi\)/2以上に拡張する場合は次のようにします。

変数が\(\pi\)/2以上の場合の三角関数
  1. sin(\(\pi\)/2) = 1, sin(x+\(\pi\)/2)=cosx と定義する。
    【sin\(\pi\)=0, sin(3\(\pi\)/2)=-1, sin 2\(\pi\)=0 になる。】
  2. cos(\(\pi\)/2) = 0, cos(x+\(\pi\)/2)=-sinx と定義する。
    【cos\(\pi\)=-1, cos(3\(\pi\)/2)=0, cos 2\(\pi\)=1 になる。】
  3. tan \(\pi\) = 0, tan(x+\(\pi\)/2)=-1/(tanx) となる。
    【tanx=(sinx)/(cosx)と定義するため。】
    mを整数として tan(\(\pi\)/2+m)は、定義しない!【無限大を避けるためです。】

ここで正弦と余弦についてはxは実数のうち何の値でもよく、負の数や直角を超える値を入れたとしても整合性がとれた定義式になっています。
正接のほうについては、余弦関数の値がゼロになる変数の値は全て「穴」になるような形で定義域から除外する形で考えるという事です。ですから例えば tan(x+\(\pi\)/2)=-1/(tanx) においてはxの値として\(\pi\)の整数倍の時は除外する、という具合に考えます。

また、正弦関数と余弦関数については次式も成立し、これを使うと計算上便利です。

公式
  1. sin(x+\(\pi\))=-sinx, sin(\(\pi\)-x)=sinx
  2. cos(x+\(\pi\))= -cosx, cos(\(\pi\)-x)=-cosx

これらは式としては統一的にまとめる事もできますが、図形的な意味としては別々に捉える事も1つの方法として便利である場合があります。正接関数についても同様の式を作る事は可能です。

さて、この定義を見ると角度が負の場合と比較して、かなり複雑であるようにも見えます。
この場合もやはり式だけで考えるのではなく、図形的に考えたものを式で表現するなら上記のようになると理解すべきでしょう。

変数が直角を考える場合には、今度は直角三角形の高さ部分の辺に関して対照的になるようにひっくり返すのです。この場合も、関数の値の絶対値は直角未満の場合の三角比の値を流用して符号だけをいじるという定義の仕方をします。

90°を超えて180°未満の「鈍角」の範囲における三角関数の具体的な値を調べる時には、鈍角を「180°-鋭角」と考えるか、「90°+鋭角」と考えるかの2通りの計算で便利なほうを使うのが普通です。

鈍角の場合①
鈍角を「180°-鋭角」と捉える場合の三角関数の値の計算方法です。
鈍角の場合②
鈍角を「鋭角+90°」と捉えた場合の三角関数の値の計算方法です。こちらは、通常の三角比の場合に成立する公式を利用して式変形で考える事も可能です。

尚、式として考える場合、「90°+鋭角」の鋭角部分をマイナスにしてさらに90°加算する事で
「180°-鋭角」の三角関数の値の式を導出する事も一応可能です。次のようにします。

$$\sin\left(\pi-\theta\right)=\sin\left(\frac{\pi}{2}+\frac{\pi}{2}-\theta\right)=\cos\left(\frac{\pi}{2}-\theta\right)=-\sin(-\theta)=\sin\theta$$

$$\cos\left(\pi-\theta\right)=\cos\left(\frac{\pi}{2}+\frac{\pi}{2}-\theta\right)=-\sin\left(\frac{\pi}{2}-\theta\right)=-\cos(-\theta)=-\cos\theta$$

変数の値が2直角、つまり\(\pi\)の時には正弦関数の値は0、余弦関数の値は-1です。これは定義として捉えてもよいですし、上記の sin(x+\(\pi\))=-sinxから導出するという形でも同じです。これらも、意味としては関数の増減との対応・周期性・なめらかな連続性を満たす要件として考える事ができます。

さらに変数が\(\pi\)を超える場合には負の角度の時のように底辺に関して対照的にひっくり返します。この場合は、sin(x+\(\pi\))=-sinx, cos(x+\(\pi\))= -cosx の関係式を使うと把握しやすいでしょう。図を見ながら、図形的に捉えましょう。

点対称になる場合と周期性
角度が2直角を超える場合には、座標上で言う第3・第4象限に三角形を配置する形になります。この時には原点に対して点対称になる三角形を考えて符号を反転するだけと考えると計算が簡単な場合が多いでしょう。

さらに角度の値を大きくすると、今度は再び高さ部分に関してひっくり返り、座標軸上で言うと第4象限の位置に配置された三角形を考える事になります。

2\(\pi\)【360°】以上の角度【周期性】

角度を増やして、4直角、つまり360°に達し、それを超えた場合はどうなるでしょう。

この場合は、sin(x+\(\pi\))=-sinx, cos(x+\(\pi\))= -cosx の関係式の変数にもう一度 \(\pi\) を加えるのです。

すると、再度符号が反転して sin(x+2\(\pi\))=sinx, cos(x+\(\pi\))= cosx となり、
もとの sinx および cosxになる事を導出できます。

これが三角関数の周期性と呼ばれる性質で、以降、角度をどれだけ増やしても延々と周期的に値を繰り返すという事です。これは正接関数についても成立します。

三角関数の周期性 次のように、三角関数は2\(\pi\)ごとに同じ値を繰り返します。
  1. sin(x+2\(\pi\))= sinx
  2. cos(x+2\(\pi\))= cosx
  3. tan(x+2\(\pi\))= tanx

この周期性は、マイナスの向きに角度を減らした場合にも適用できます。つまりマイナス方向にもプラス方向にも、実数全体にわたって2\(\pi\)の周期性があるという事です。

sin(x+2\(\pi\))=sinxの関係から、sin(2\(\pi\)-x)=sin(-x) となり、余弦関数の場合も同様です。これは図形的に見ると、同一の頂点に相当する部分に至る角度を反時計回り(プラス)で測っても時計回り(マイナス)で測っても三角関数の値は同じである事を意味します。

尚、sin2xのような関数を考える場合には、周期性は sin(2x+2\(\pi\))=sin2xのようになります。
するとこの場合には、xに着目するとsin(2x+2\(\pi\))=sin2(x+\(\pi\))のようになりますから、xの変化としては周期は\(\pi\)ごとに発生する事になるのです。xは\(\pi\)だけ変化すれば三角関数の変数全体では2\(\pi\)の変化になるので、それだけで周期が1サイクルしてしまうという事です。
グラフ上では通常の正弦関数よりも「密」になった波の形になります。

単位円による定義方法

さて、以上の三角関数の定義と性質を見ると、式だけで覚えるのは大変複雑で、図形的に見るとそれほど難しい理屈ではない事が分かると思います。

上記の図でもところどころに描いていますが、じつは三角関数を把握するには円を描くと便利です。(三角関数の別名を「円関数」とも言います。)

この円は、原点を中心とした半径を1にした円で、単位円と呼ばれます。

すると、斜辺の長さに相当する「半径」が1ですから、角度の取り方は前述の方法と同じであるとすると、
円周上の点のx座標は余弦関数の値、y座標は正弦関数の値になるのです。

この単位円による方法でも適切に三角関数の値を出せるので、これを定義にしてしまうやり方もあります。

単位円による三角関数の定義

直交座標上の原点を中心とする半径1の円周上の点(X,Y)を考えて、
(1,0)から測った円周の長さ(弧度法の角度に等しい)をxとします。この時、

  1. X=cosx すなわち余弦関数と定義する
  2. Y=sinx すなわち正弦関数と定義する
  3. 正接関数は tanx=(sinx)/(cosx) で定義する

各三角関数には2\(\pi\)の周期性があり、
角度は反時計回りをプラス符号、時計回りをマイナス符号として区別するものとします。

単純な覚えやすさと使いやすさに関しては、この単位円による方法は非常に優れています。

欠点があるとすれば、三角比の拡張として唐突に「円」を持ち出すと、やはり少しばかり飛躍を感じさせるのも事実だと思います。最初から単位円による定義で教え込まれてしまうと結局「わけもわからずに」暗記するだけ・・という事になりがちです。

単位円による定義
単位円を使った三角関数の定義は、覚え方や計算の便宜としては非常に優れています。

重要な公式まとめ

三角関数の公式としては、簡単に4つのグループに分けると次のようなものがあります。

  1. 三角比についても適用できる公式
  2. 定義域を拡張した三角関数に特有なもの(例えば周期性)
  3. 正弦定理と余弦定理
  4. 加法定理と、それから派生する公式

まず、三角比についても成立するいくつかの公式は、三角関数でも成立します。これは三角比範囲の角度でのみ成立するのではなく、負の角度や直角以上の角度を代入してもきちんと成立するところが便利です。

三角関数の公式①

次式は三角比について成立しますが、
定義域を実数全体とする三角関数においても成立します。 $$\tan x=\frac{\sin x}{\cos x}$$ $$\cos^2 x+\sin^2 x=1$$ $$\cos \left(\frac{\pi}{2}- x\right)=\sin x$$ $$\sin \left(\frac{\pi}{2}- x\right)=\cos x$$ $$\tan \left(\frac{\pi}{2}- x\right)=\frac{1}{\tan x}$$ 角度についてはここでは弧度法で記しましたが、単純な図形問題にこれらを適用する際には角度を度数法で記しても大きな問題は普通は起きません。

これらの証明は三角比の説明のところで詳しく記しています。

周期性も含めて、三角関数特有の公式・性質も整理しておきましょう。
前述の通り、式だけで覚えるのではなく図形的に理解して覚えるとよいと思います。

三角関数の公式②

これらは特に三角関数において成立する関係式です。 $$\cos \left(\frac{\pi}{2}+ x\right)=-\sin x$$ $$\sin \left(\frac{\pi}{2}+ x\right)=\cos x$$ $$\sin(-x)=-\sin x\hspace{20pt}\cos(-x)=\cos x$$ $$\sin(\pi +x)=-\sin x\hspace{20pt}\cos(\pi +x)=-\cos x$$ $$\sin(\pi -x)=\sin x\hspace{20pt}\cos(\pi -x)=-\cos x$$ $$\sin(2\pi +x)=\sin x\hspace{20pt}\cos(2\pi +x)=\cos x$$ 最後の関係式については周期性と呼ばれる事は前述した通りです。
正接関数については、全てtanx=(sinx)/(cosx) の関係から公式を作る事ができます。

図形的に三角形に対して成立する公式で三角関数を使うものには、正弦定理余弦定理というものがあります。(余弦定理のほうがどちらかというと重要かと思います。)それらは基本的には三角比に対して成立しますが、角度として鈍角や直角を適用する場合には三角関数の定義を使用すると図形的な対応もうまくとれるという具合になります。図形的な対応さえきちんとつけるなら、余弦定理に関しては全実数の範囲の角度を適用しても成立します。

三角関数の公式③ 図形的な定理
  1. 正弦定理:三角形の辺a、b、cの対角の大きさをそれぞれA,B、C、三角形に外接する円の半径をRとすると
    a/sinA=b/sinB=c/sinC=2R
  2. 余弦定理:三角形の辺a、b、cと、辺aの対角の大きさAについて次の関係が成立する。
    a=b+c-2bccosA
    【特にAが直角の時は三平方の定理そのもの】

また、三角関数の加法定理というものがあって、これは複素数の理論の一部を構成しており、微積分のほうで計算を進めるために使う事もあるので三角関数の公式の中では重要な部類に入ります。
また、この加法定理から派生するいくつかの小さなグループの公式として積和の公式・和積の公式・倍角の公式と呼ばれるものもあります。それらは本質的にはもともと加法定理そのもので、少し式変形をして形を変えたものになります。

三角関数の公式④ 加法定理

2つの角度の大きさ A, B に関して次式が成立します。

  1. sin(A+B)=sinAcosB+cosAsinB
  2. sin(A-B)=sinAcosB-cosAsinB
  3. cos(A+B)=cosAcosB-sinAsinB
  4. cos(A-B)=cosAcosB+sinAsinB
sinAcosB などは、sinA と cosB の積です。
正接関数についても、tan(A+B)=sin(A+B)/cos(A+B) の計算によって加法定理の公式を作る事が可能です。

この他に、高校数学では必要ありませんが、三角関数を使った無限級数によって周期関数を解析する技法があります。そこでも三角関数の基本的な性質や公式は前提として話が進められる事も多いので、基礎事項をよく知っておくと後々の学習が進めやすい事もあろうかと思います。

直角三角形の辺の比の関係【sin, cos, tan】

三角比とは直角三角形の2つの辺の比の事で、どの2つの辺を考えるかによって
「正弦(sine)」「余弦(cosine)」「正接(tangent)」の3種類があります。
【学校では一般的には高校数学の内容です。】

このページでは三角比の図形的な意味と使われ方について詳しく説明します。

三角比は「三角関数」の変数を平面図形で使用する範囲に限定したものであり(基本は0から90°(\(\pi\)/2) で、鈍角三角形を含む図形問題に適用する時は180°まで広げます。)三角関数の値と諸性質の基本になっています。ただし、三角関数は図形を離れて周期関数として扱う事に1つの大きな意味があり、図形問題を解くツールとしての三角比とはやや区別すべきところがあります。

そのため、数学的に厳密に区分されているわけではないのですが、使う目的を区別する意味で三角比と三角関数は分けておくと整理がしやすくなります。全く関連がないという事ではなくて、目的や考察の着目点が変わってくるという事です。

正弦・余弦・正接は図形的に見れば「直角三角形の辺の長さの比」であり、何と言っても分かりやすい事に利点があります。まず図形的な意味を把握してから、「直角三角形」という図形を離れても考え方を適用できるように工夫をするのが基本的な流れになります。ここでの「三角比」の説明は、その最初の図形的な段階の説明になりまs。

正弦・余弦・正接の図形的な定義

三角比は直角三角形の辺の比ですが、この値は角度によって変わります。そのため、三角比は角度を変数として表されます。

三角形の各辺の比は相似である別の三角形でも同じ値ですから、三角比は直角三角形の大きさにはよらず角度によってのみ確定する値になります。角度によって1つの値が決まるのです。

次のように角度をθ(シータ、テータ)として、
正弦・余弦・正接はそれぞれ「sin(サイン)」「cos(コーサイン、コサイン)」「tan(タンジェント)」の記号を使って表します。

正弦、余弦、正接の定義

$$正弦:\sin \theta$$

$$余弦:\cos \theta$$

$$正接:\tan \theta$$

角度θの部分には具体的な角度を入れたりします。
例えば、角度30°の正弦は sin30°と書き、「サイン30度」のように読みます。
弧度法で書くなら 30°は\(\pi\)/6】

★高校数学では、1次関数のグラフの傾きを正接 tanθ で表す事もあるので知っておくと便利です。
意味としては、図形上の意味と「傾き」の定義(yの増分をxの増分で割った値)を考えてみるとすぐに分かるでしょう。

三角比はまずは図で考えてみるべきものです。直角三角形の斜辺の長さをc、対象の角度を斜辺とともはさむ辺の長さをa、残り1つの辺の長さをbとします。その時の正弦、余弦、正接は辺の長さで表すと次のようになります。

$$\sin \theta=\frac{b}{c}\hspace{20pt}\cos \theta=\frac{a}{c}\hspace{20pt}\tan \theta=\frac{b}{a}$$

【直角三角形なので三平方の定理によりa+b=cですが、これは必要がある場合には使います。】

上記3つの三角比の逆数も、同じく三角比の仲間です。しかし高校数学ではそれほど重要ではありません。特定の計算で逆数の表記が煩雑になる場合などでは、表記法として役に立つ事もあります。
一応記号を書いておくと次の通りです。コーセカント、セカント、コータンジェントと読みます。 $$\mathrm{cosec}\theta=\frac{c}{b}=\frac{1}{\sin\theta}\hspace{20pt}\sec\theta=\frac{c}{a}=\frac{1}{\cos\theta}\hspace{20pt}\cot \theta=\frac{a}{b}=\frac{1}{\tan\theta}$$ 高校数学では正弦 sinθ、余弦 cosθ、正接 tanθ の3つがまずは基本であると考えてよいと思います。

具体的な値(30°、45°、60°)

さて、これら三角比の値は角度によって1つに定まると前述しましたが、具体的な値については、手計算で簡単に分かるものはじつは数えるほどのものしかありません。

具体的には、30°、45°、60°の三角比については図を描く事で簡単に知る事ができます。
(学校で覚えるようにと言われるのも基本的にはこれらの値です。)

30°、45°、60°の三角比の出し方
三平方の定理を使えば直角三角形の斜辺とその他の辺の長さの関係が分かるので、三角比の値を計算する事ができます。

30°、45°、60°の三角比の具体的な値を表にすると次のようになります。
後述する三角比の公式と合わせると、より分かりやすいでしょう。

正弦(sinθ) 余弦(cosθ) 正接(tanθ)
$$\sin 30°=\frac{1}{2}$$ $$\cos 30°=\frac{\sqrt{3}}{2}$$ $$\tan 30°=\frac{1}{\sqrt{3}}$$
$$\sin 45°=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$$ $$\cos 45°=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$$ $$\tan 45°=1$$
$$\sin 60°=\frac{\sqrt{3}}{2}$$ $$\cos 60°=\frac{1}{2}$$ $$\tan 60°=\sqrt{3}$$

これらの三角比の値を知る方法はごく単純なものであって、まず正三角形を真っ二つにする事によって30°と60°の場合が分かります。

まず60°の場合です。この場合は、1辺が「2」の正三角形を考えると分かりやすく、真っ二つにすると斜辺が2、底辺が1、高さが\(\sqrt{3}\)の直角三角形ができます。斜辺の長さを2とすると、真っ二つにする事でできる底辺の部分は1、切断部分に相当する高さ部分は三平方の定理により3の平方根になるという事です。

$$高さ部分の辺の大きさをhとすると、h=\sqrt{2^2-1^2}=\sqrt{3}$$

それで、三角比も分かる事になります。得られた値を、定義にそのまま代入するのです。三角比の定義通りに当てはめると次のようになります。

$$\sin 60°=\frac{\sqrt{3}}{2}\hspace{20pt}\cos 60°=\frac{1}{2}\hspace{20pt}\tan 60°=\frac{\sqrt{3}}{1}=\sqrt{3}$$

30°の場合は、直角三角形の残りの角度が90°ー60°=30°である事を使います。三角形の向きを変えてみると分かりやすいでしょう。次のようになります。

$$\sin 30°=\frac{1}{2}\hspace{20pt}\cos 30°=\frac{\sqrt{3}}{2}\hspace{20pt}\tan 30°=\frac{1}{\sqrt{3}}$$

次に45°の場合ですが、これは1つの角が直角であれば直角二等辺三角形になりますので、斜辺の長さをc、残りの辺の長さを1とすればc=1+1=2によって計算できるので三角比も分かるわけです。

$$\sin 45°=\frac{1}{\sqrt{2}}\hspace{20pt}\cos 45°=\frac{1}{\sqrt{2}}\hspace{20pt}\tan 45°=\frac{1}{1}=1$$

図に描いてみると分かりやすいと思いますが、sin 45°=cos 45° になります。

参考までに、その他の角度についての三角比の値を知るには、正弦についての無限級数展開(マクローリン展開)を使います。$$\sin \theta=\theta – \frac{\theta^3}{3!}+\frac{\theta^5}{5!}-\frac{\theta^7}{7!}+\cdots$$ただし、この式を使う時には角度は弧度法で表したものでなければなりません。
例として、10° は弧度法で\(\pi\)/18なので、式に代入して四捨五入で小数点第3位まで計算すると sin10° ≒ 0.174 です。
最近の高校ではこの式は扱わないので、高校数学の範囲ではこの計算は覚えなくて差し支えありません。(高校の物理で一部、θが小さい時には sinθ≒θ であるという近似式を使いますが、それが上記の式で高次の項を0とみなしたものです。)

公式と性質

三角比について成立する公式や性質がいくつかあるので、挙げておきます。

まず1つは、公式というか図を見れば分かるかとも思いますが、正弦と余弦は0~90°の範囲において、0より大きく1より小さい範囲の値しかとらないというものです。これに対して0~90°の範囲の角度において、正接はいくらでも大きい正の値をとれます。

三角比の公式・性質①

角度θが0<θ<90°の範囲の時、次式が成立します: $$0<\sin\theta<1\hspace{20pt}0<\cos\theta<1$$ これに対して、0<θ<90°の範囲で正接 tanθ は任意の正の値を取り得ます。

この不等式が成立する理由は、三角形の辺の長さのうち斜辺は必ず3辺の中で最大の長さになるという性質を考えてもいいですし、三角不等式c>a+bを考えてもいいですし、三平方の定理から分母が必ず分子より大きくなると考えてもいずれの方法でもよいと思います。

また、次のいくつかの式が成立します。

三角比の公式・性質②

正弦、余弦、正接について次式が成立します: $$\tan\theta=\frac{\sin\theta}{\cos\theta}$$ $$(\cos\theta)^2+(\sin\theta)^2=1$$ $$【\cos^2\theta+\sin^2\theta=1と、一般的に書きます。】$$ $$\cos (90°-\theta)=\sin \theta$$ $$\sin (90°-\theta)=\cos \theta$$ $$\tan (90°-\theta)=\frac{1}{\tan\theta}$$

これらは、式だけで暗記しようと思わず図に描いて意味を理解すると分かりやすいでしょう。結局は直角三角形の辺の比である事を考えれば難しいものではない事はすぐに分かるはずです。

公式

上記の公式の第1式である正接を正弦と余弦で表す関係は、単純に正弦を余弦で割ると出ます。斜辺の部分は消えてしまうわけです。

$$\frac{\sin\theta}{\cos\theta}=\frac{b}{c}\cdot\frac{c}{a}=\frac{b}{a}=\tan\theta$$

2番目の、正弦と余弦のそれぞれの2乗の和が1になるという式は、三平方の定理を使用します。一見奇怪な関係式に見えるかもしれませんが、じつは非常に簡単な意味の公式なのです。

$$(\cos\theta)^2+(\sin\theta)^2=\frac{a^2+b^2}{c^2}=\frac{c^2}{c^2}=1$$

三角比のn乗の表記

三角比の2乗については、次のように書く習慣があります。 $$\sin^2\theta\hspace{15pt}\cos^2\theta\hspace{15pt}\tan^2\theta$$ また2乗だけでなく、3乗、4乗等でも同じようにします。
これは一応、「ある角度の2乗」θの三角比 sin(θ)と区別するためです。

90°-θ の角度を考えている関係式は、図を見て書いているだけです。直角三角形の θ とは別の角度の三角比は、正弦と余弦の関係をちょうどひっくり返して表せるという事です。

この場合、正接については sin(90°ーθ) を cos(90°ーθ) で割って関係を出しています。
最初の関係式 tanθ=sinθ/cosθ も使っています。

$$\tan (90°-\theta)=\frac{\sin (90°-\theta)}{\cos (90°-\theta)}=\frac{\cos \theta}{\sin \theta}=\frac{1}{\tan\theta}$$

これらの公式は図で理解しながら覚えるとともに、30°、45°、60°の三角比の場合などに適用すると確かに成立するといった事を確かめてみると学びやすいでしょう。例えば sin30°= cos60° という関係が確かに成立しています。

この他に、図形問題を解くための余弦定理正弦定理があります。特に余弦定理のほうは図形問題を解く時に使う頻度が多い場合もあります。

三角比はベクトルの内積の定義においても使用します。内積の定義で使われるのは余弦ですが、平面上の平行四辺形の面積を表すために正弦のほうが使われる事もあります(のちのち重要な場面でこれが出てきます)。

これらの図形に関して三角比を適用する時、90°を超える鈍角に対して三角比を適用したい場合も出てきます。しかし鈍角を含む三角形はどうやっても直角三角形になりません。そこで、三角関数による定義を採用して鈍角の場合も三角比の値を「定義」してあげると整合性がとれた形で適用が可能になります。【その場合、θを鈍角として sinθ=sin(180°-θ)、cosθ=-cos(180°-θ)とする事で上記の余弦定理等を適用できるようになります。】