ガウスの法則【電場と磁場の数学】

ガウスの発散定理およびガウスの積分と直接的な関わりを持つ物理学での応用例としては、
電磁気学における「ガウスの法則」が存在します。
ここでは特に、
数学と電磁気学との、ベクトル解析・微積分的な関わりの観点からの法則の説明をします。

◆関連:法線面積分の定義

音声担当:CeVIOさとうささら 素材一部:pixabay.com

◆下記で詳しく説明いたしますが、「ガウスの法則」には、積分の形で書いたもの(積分形)と、微分の形で書いたもの(微分形)の2つの形があります。数学的に両者は同等の式です。

ベクトルの基本的な考え方も使用します。

ガウスの法則とは?電場と磁場に関する法則

4つの「マクスウェル方程式」のうちの2つを指す
電場に関するガウスの法則 ◆磁場に関するガウスの法則
クーロンの法則の一般形という解釈

マクスウェル方程式
(電場と磁場に関するのガウスの法則・電磁誘導・アンペールの法則)
Eは電場、Bは磁場(「磁束密度」とする考え方も)です。
ρ:電荷密度 j:電流密度 t:時間 
ε:誘電率 μ:透磁率 添え字の0は「真空の」の意味でここでは使っています。
div:ベクトル場の「発散」 rot(curl):ベクトル場の「回転」  ∂:偏微分の記号
∇(ナブラ)記号と内積・外積の記号を組み合わせて div は「∇・」 rot は「∇×」のように書く事もあります。

4つの「マクスウェル方程式」のうちの2つを指す

電磁気学における「ガウスの法則」とは、
電磁気学の基本式である4つの「マクスウェル(Maxwell)方程式」のうち2つを指しており、
静電場(時間変動しない電場)と静磁場(時間変動しない磁場)に関する記述を行う式です。

★ただし時間変動がある場合にも、「ある瞬間について電場や磁場を考察した場合」には、任意の時刻についてガウスの法則が電場と磁場の両方に対して成立します。
他方で、電場や磁場の時間変動そのもの、つまり数式的に言えば電場や磁場の「時間微分」に関しては、マクスウェル方程式の残り2つの式によって考察を行う事になるのです。

ガウスの法則は、微分方程式でも積分方程式でも、どちらの形でも書かれます。(積分方程式とは、積分を含んだ形で書かれる方程式。)
どちらの形でも互いに変形が可能な、数学的に同等な式になります。

微分方程式で書かれた場合を微分形、積分方程式で書かれた場合を積分形とも言います。
数学の「ガウスの積分」との直接的な関わりがすぐに分かるのは積分形です。

電場に関するガウスの法則

電場に関するガウスの法則を式で書くと次のようになります。数学の定理と区別される「法則」なので、変数や定数は何でもよいわけではなく、電気と磁気に関連する量になります。

\(\overrightarrow{E}\) は電場(+1[C]の電荷が他の電荷から受ける電気力。ベクトルです)、
Qは点電荷の電気量、ρは電荷が連続的に分布している場合の電荷密度です。

ガウスの法則(静電場、積分形)

$$点電荷に対して:\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{Q}{\epsilon_0}}$$ $$電荷密度に対して:\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{1}{\epsilon_0}}\int_V\rho dv$$ ※左辺は、法線面積分です。Sは閉曲面、Vは閉曲面内の空間領域です。
閉曲面Sは、電荷あるいは電荷分布を囲む領域とします。
電荷密度は、空間の各位置によって大きさが定まるスカラー関数として考えています。
電磁気学では \(\overrightarrow{E}\cdot d\overrightarrow{s}\) を「電気力束」と呼ぶ事があります。

ガウスの法則(静電場、微分形)

$$\mathrm{div}\overrightarrow{E}=\large{\frac{\rho}{\epsilon_0}}$$ ※div はベクトル解析における「発散」です。
ガウスの法則の微分形は、基本的に電荷密度に対する式になります。

◆これらの積分方程式あるいは微分方程式の「解き方」については、
「具体的な電荷の分布の状況や閉曲面」を設定して、電場ベクトルの向きも最初から決定できるような状況のもとで解くというのが1つの例です。
閉曲面は、球、円柱、立方体など、対称性のある図形や分かりやすい図形で考察する事が多いと言えます。(※球面のような任意の点で滑らかな閉曲面だけでなく、円柱などへの適用も可能です。)

電場に関するガウスの法則(積分形)
電磁気学・静電場に関するガウスの法則(積分形):点電荷あるいは電荷が分布する領域を閉曲面で囲った時、その閉曲面の形状に関わらず法線面積分の値は、じつは閉曲面内部の電気量(の総和)に必ず比例するというものです。
静磁場に関しても似た形のガウスの法則が存在します。

微分形で書いた場合には、マクスウェル方程式全体に言える事ですが、電場の2式と磁場の2式のそれぞれについて、「発散(div)」の式と「回転(rot)」の式に分類する事もできます。【回転は curl とも書きます。】

磁場に関するガウスの法則

静磁場の場合にも、電場の場合と似た形の式が成立し、
それも同じくガウスの法則と呼ばれる事が多いです。

ただし、磁場に場合には電場の場合と異なって、「単独の『磁荷』」(「磁気単極子」)が存在しない(磁石で言うと、N極やS極が必ずセットになっていて単独で取り出せない)という事自体が1つの基本法則であると考えられています。

その事に由来して、
「電場の場合の式の右辺に相当する部分がゼロになっている形」が、磁場の場合のガウスの法則になります。

ガウスの法則(静磁場、積分形)

$$\int_S\overrightarrow{B}\cdot d\overrightarrow{s}=0$$ \(\overrightarrow{B}\cdot d\overrightarrow{s}\) は「磁束」と呼ばれる事があります。
\(\overrightarrow{B}\) は「磁束密度」と呼ばれる事があり、そこから別途に「磁場」\(\overrightarrow{H}\) を定義する事もありますが、\(\overrightarrow{B}\) を「磁場」と呼んでしまう事もあります。細かく言うと、それらの違いは「場」を力によって定義するかどうかという事によって生じます。

ガウスの法則(静磁場、微分形)

$$\mathrm{div}\overrightarrow{B}=0$$

静磁場は一定の量の電流の周りに対し、同心円(一定の半径の円)の周上に一定の大きさで発生します(向きは各場所で異なりますが)。
静磁場が同じ大きさで、磁力線がループを作る形で必ず閉じているわけで、この事から「磁場の発散 div\(B\) は必ずゼロになる」つまりガウスの法則の微分形が成立する」という事が実は言えます。
(ベクトル場の「発散」は、ベクトル場の各成分の成分座標による偏微分の合計で、図形的にはある点に流入・流出する何かの量を表します。そのため電磁気学だけではなく流体力学の理論などでも使われるものです。)

具体的な数式変形は後述しますが、数学的には、ガウスの法則の積分形の式を数学上の「ガウスの発散定理」を使って変形する事でガウスの法則の微分形が得られるという関係があります。

クーロンの法則の一般形という解釈

静電場を表す式としてはいわゆるクーロンの法則というものもあり、それは静電気による力と電気量との定量的な関係を表す式です。
ここで「静電気」とは、冬場などでパチパチとしたり、紙片やビニールがくっついたりしてしまう、あの静電気の事です。

ガウスの法則は、クーロンの法則を一般化した形であるという解釈も成立します。
その事を数式的に説明するには数学公式である「ガウスの積分」を使います。

ガウスの法則の1段階前の式とも言えるクーロンの法則の比例定数kは、
一見すると奇怪な形で書かれる事があります。
それは、比例定数が分母に円周率を伴った形で書かれるというものです。

$$k=\large{\frac{1}{4\pi\epsilon_0}}\hspace{10pt}\left(≒8.988×10^9\right)$$

ここでさらに\(\epsilon\)0 という比例定数が登場していますが、
これは電磁気に関する別の現象を表す時にも使う「真空の誘電率」です。

$$\large{\epsilon_0=8.8543×10^{-12}≒ \frac{1}{36\pi}×10^{-9}}$$

さてここで、なぜ円周率が出てくるのか?という話ですが、
これは数学公式のガウスの積分との直接的な関係があるのです。
数式によって後述しますが、実はガウスの法則をクーロンの法則から導出する方法を見る事で理由が分かるのです。

また、ガウスの積分は図形の「球」との直接的な関係がありますから、
上記の「円周率」は、最終的には図形の球に由来するものであるとも言えます。

クーロンの法則

r[m]離れた2つの物体があり、q[C]、q[C]の電気量を持っているという。この時に2つの物体間に働く力の大きさは、実験によれば次のようになります。 $$力の大きさ:F=\large{\frac{kq_1q_2}{r^2}}=\large{\frac{q_1q_2}{4\pi\epsilon_0r^2}}$$ $$ベクトルの場合:\overrightarrow{F}=\large{\frac{q_1q_2}{4\pi\epsilon_0r^2}}\cdot\frac{\overrightarrow{r}}{r}=\large{\frac{q_1q_2}{4\pi\epsilon_0r^3}}\overrightarrow{r}$$

クーロンの法則の比例定数をなぜか「円周率」を使って表す事があります。
その意味は、ガウスの積分を使ってクーロンの法則からガウスの法則を数学的に導出して考察してみると分かりやすいものになります。4という数字に関しては球の表面積の公式が間接的に関わっています。

導出:微分形と積分形の数式変換

電場の場合 ■ 磁場の場合

ガウスの法則の積分形と微分形の式は、数学的にはガウスの発散定理によって変換できます。

ガウスの発散定理

任意のベクトル場\(F\)について【※これは電場でなくともよく、数学的な任意の連続的なベクトル場に関して成立します。】 $$\int_S\overrightarrow{F}\cdot d\overrightarrow{s}=\int_V \mathrm{div}\overrightarrow{F}dv$$

これを使用して、積分形から微分形、および微分形から積分形への変換を数式で行う事ができます。

ガウスの法則の積分形と微分形
数学的には、ガウスの発散定理によってガウスの法則の積分形と微分形の変形を行う事ができます。
法則として、より物理的な解釈も可網です。

電場の場合

ガウスの法則の積分形の左辺は、発散定理の左辺の形をしています。ここで、電荷密度を考えた場合の式を見ると、領域内を体積分した形が右辺にあります。

$$電荷密度に対するガウスの法則:\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{1}{\epsilon_0}}\int_V\rho dv$$

$$ガウスの発散定理により\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\int_V \mathrm{div}\overrightarrow{E}dv$$

左辺が同一ですから、右辺同士を等号で結びます。

$$\int_V \mathrm{div}\overrightarrow{E}dv=\large{\frac{1}{\epsilon_0}}\int_V\rho dv=\int_V \large{\frac{\rho}{\epsilon_0}}dv$$

$$\Leftrightarrow \int_V \mathrm{div}\overrightarrow{E}dv=\int_V \large{\frac{\rho}{\epsilon_0}}dv$$

「2つの関数について、領域Vで体積分すると同じ値」という結果になっています。

ここで、「定積分した値が同じ」であるからといって、積分対象になっている関数が同一のものとは限らない事に注意は必要です。簡単な例を挙げると、y=xと、y=-x+1は、xについて0から1まで積分すれば同じ1/2という値ですが、当然積分の中身の関数は別物ですね。

しかしここでの場合は、積分する領域Vが、特定のVではなくて空間上の「任意の領域」です。
1変数関数の積分で言うと「任意の積分区間で」という事になります。
グラフを考えてみると分かりやすいかと思いますが、2つの異なる関数についてある積分区間で偶然定積分の値が等しくなったとしても、区間を変えればすぐに値は変わってしまいます。あらゆる区間で例外なく積分値が同じになるには、そもそも同一の関数でなければならないのです。
その理由により、上記の体積分の関係式についても積分する対象が等しくなければならないのです。

整理しますと次のようになります。

$$\int_V \mathrm{div}\overrightarrow{E}=\int_V \large{\frac{\rho}{\epsilon_0}}dvであり、「積分領域Vは任意であるから」\mathrm{div}\overrightarrow{E}=\large{\frac{\rho}{\epsilon_0}}$$

と言える事になります。
これは電場に関するガウスの法則の微分形に他なりません。【導出終わり】

逆に微分形から積分形を導出するには、微分形の両辺を領域Vで体積分し、
ガウスの発散定理によって法線面積分と結びつければよい事になります。

ガウスの法則の積分形から微分形を数式的に導出する時の、最後の段階の箇所。
任意の領域Vで成立している事が結論を数学的に導出できる根拠になります。

微分形と積分形の変換の方法は他にも幾つかあります。例えば、より物理学的な手法の1つとして、辺の長さが dx, dy, dz の微小な直方体を考えてガウスの法則の積分形を適用する方法があります。
この方法では dv=dxdydz として、その直方体内では電荷密度ρは「ほぼ一定」と考えます。
直方体の面は座標軸に平行であるとし、原点に一番近い頂点を基準として、面における電場ベクトルと法線ベクトル(大きさは微小面積)との内積を成分で考えます。
直方体の向き合う2つの面について、
法線ベクトルの向きは互いに逆向き(領域の外側を向く)事にも注意すると
例えばx軸に垂直な面の面積としてds=dydzを考えると、次のようになります。$$\large{\left(E_x+\frac{\partial E_x}{\partial x}dx\right)dydz-E_xdydz=E_xdxdydz=E_xdv}$$【Exは原点に最も近い頂点での電場ベクトルのx成分。この考え方では、微分および偏微分は「関数の近似一次式の傾き」という解釈を使っています。】
電場ベクトルと面の法線ベクトルとの内積計算を成分で具体的にすると、
例えば $$\large{(E_x, E_y, E_z)\cdot (-dydz, 0, 0 )=-E_x dydz}$$
残り4面(2組)についても同様の式を立て、合計します。
そして「ほぼ一定」とみなしたρを使って体積分の値は ρdvであると考えて、電場に関するガウスの法則の積分形に適用すると微分形が得られる――という考え方もあったりします。

ガウスの法則の微分形を、より物理学的な考察で導出する方法の1つ。微分係数および偏微分係数は関数の近似一次式の比例定数とみなせるとの解釈を使用します。
直方体の互いに向き合う面において法線面積分で使用する法線ベクトル(外側を向く)を内積の具体的な成分計算で使う時には符号がプラスマイナスで互いに逆になります。【例えば単位法線ベクトルなら(1,0,0)と(-1, 0, 0)、法線ベクトルの大きさを面積元素とすれば(dydz, 0, 0)と(-dydz, 0 ,0)】
直方体は微小であり、1つの面での電場ベクトルは1つに代表させています。

磁場の場合

磁場の場合もやり方は同じです。

$$ガウスの発散定理により\int_S\overrightarrow{B}\cdot d\overrightarrow{s}=\int_V \mathrm{div}\overrightarrow{B}$$

$$\int_S\overrightarrow{B}\cdot d\overrightarrow{s}=0 より、\int_V \mathrm{div}\overrightarrow{B}=0$$

この場合も、「任意の積分領域Vに対して」積分するとゼロという式なので、
積分する前からの話として div\(\overrightarrow{B}\)=0 でなければそれは起こり得ない事になります。
(※磁場が恒等的にゼロなのではなくて、「静磁場としてあり得る任意の形に対して、ベクトル場の発散を考えると必ずゼロになる」という意味です。)

ガウスの法則をクーロンの法則から導出する(電場の場合)

ガウスの積分と発散定理からの導出 
逆にガウスの法則からクーロンの法則は導出可能?の問題 
磁場の場合にもガウスの法則を導出可能?の問題

ガウスの積分と発散定理からの導出

電場とは「+1[C]の電荷が他の電荷から受ける力」と定義して定めた量ですので、クーロンの法則で片方の電荷の電気量を1としたものとして式で表せます。

$$電場の大きさ:E=\large{\frac{kQ}{r^2}}=\large{\frac{Q}{4\pi\epsilon_0r^2}}$$

$$ベクトルの場合:\overrightarrow{E}=\large{\frac{Q}{4\pi\epsilon_0r^2}}\cdot\frac{\overrightarrow{r}}{r}=\large{\frac{Q}{4\pi\epsilon_0r^3}}\overrightarrow{r}$$

さてこれを見ると、「距離の逆2乗に比例するベクトル場」ですから、
法線面積分を考えれば「ガウスの積分」の公式を使用できます。

ここでの場合、電荷を囲む閉曲面を考えますから、公式で言うと「原点が閉曲面の内側にある場合」です。この時にガウスの積分の値は、極限値として\(4\pi\) になります。

ところで、上記の電場ベクトルでは、Q/(\(4\pi \epsilon\)0) という部分は比例定数です。そこで、残りの部分がガウスの積分におけるベクトル場と同じ形という事になります。

という事は、上記の電場ベクトルを電荷を囲む閉曲面で法線面積分すると、次の計算結果になります。

$$\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{Q}{4\pi\epsilon_0}\frac{\overrightarrow{r}}{r^3}}\cdot d\overrightarrow{s}=\large{\frac{Q}{4\pi\epsilon_0}}\cdot 4\pi=\large{\frac{Q}{\epsilon_0}}$$

つまり、電場に関するガウスの法則の積分形になります。【導出終わり】

尚、閉曲面の外に電荷があるような場合を考えたとして、同じように法線面積分を考えたとすると、ガウスの積分の公式により、法線面積分の値は0になります。
ただしその場合にはむしろ、物理的には「閉曲面内に電荷は存在しない」という解釈になるでしょう。

★ガウスの積分の公式においては「基準とする原点で関数を定義できない」という事で極限値を考えるわけですが、これはどちらかというと数学的な捉え方であり、
物理学では敢えてそのようには考えずに「デルタ関数」という特殊な関数を使う事で、
原点における電場の扱いの理論的整合性をとるという考え方をする場合もあります。

★「立体角」を使って電場に関するガウスの法則を説明・導出する方法もあります。ただし立体角の数学的な定義は、ガウスの発散定理の成立を前提にしています。その点には注意が必要です。

ガウスの積分の値を計算する公式の証明では、ベクトル場の発散の具体的な計算と、球の表面積の公式を使用します。

逆にガウスの法則からクーロンの法則は理論的に導出可能?の問題

上記の説明は電場に関して「クーロンの法則が成立→ガウスの法則が成立」という事が数学的には導出可能である事を述べたものですが、
物理学的にも数学的にも、もう少しだけ詳しく言うとクーロンの法則は理論的には、
①電場に関するガウスの法則
②静電場の渦無しの法則(電場の「回転」が0、数式だと rot\(\overrightarrow{E}\)=0)
③無限遠でベクトル場の大きさが距離の逆2乗の程度の収束の速さで0に近づく
という3条件が全て成立している事と等価である式になります。

つまり、逆に「ガウスの法則が成立するならクーロンの法則も直ちに成立すると理論的に言えるか?」という問題に関しては、「渦無しの法則と、無限遠での条件を課せばそうである」という事になります。

※静電場に関する渦無しの法則の形は、磁場の時間変動がある場合には電場の回転はゼロ以外の値になるという式に変わります。それは発電機で電気を発生させる原理である電磁誘導の法則であり、マクスウェル方程式の1つになります。$$磁場の時間変動がある場合(電磁誘導):\mathrm{rot}\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$$この式で静磁場の場合(時間による偏微分がゼロ)であれば、静電場の渦無しの法則と同じ式です。

磁場の場合にもガウスの法則を導出可能?の問題

では磁場の場合はどうでしょうか。
実は磁場に関しても、その大きさが距離の逆2乗に比例するという実験結果があります(それもクーロンの法則とも呼ばれます)。

しかし磁場の場合には実は話が少し変わってきて、
静電場におけるクーロンの法則に対応するものは、ビオ・サバールの法則と言って外積(クロス積)を使って表された形をしており、接線線積分で書かれます(あるいは微小部分に対する形式でも書かれます)。
これは磁石ではなく電流により発生する磁場を記述したものです。(別途にアンペールの法則というものもあります。)
磁場に関するガウスの法則の積分形は、「ビオ・サバールの法則から導出できる」というのが磁場の場合の一般的な理論になっています。

上記でも少し触れましたが、電流により発生する磁場は軸対称(ここで言う軸とは電流の向きを表す直線)で同心円上にて等しい値になる事から、磁場の発散 div\(\overrightarrow{B}\) がゼロになる事、つまり磁場に関するガウスの法則の微分形のほうを先に述べるという事もあります。
磁場の大きさが電流の向きに対して軸対称になる事を使うのは、ビオ・サバールの法則を基本に考える場合も実は同じです。

磁石による磁場を考える場合には、単独の電荷に相当する「磁荷」を実験的に見出せず、
N極とS極の対(「磁気双極子」)が必ず現れるというのが基本認識になっています。
ところで、その磁気双極子が板状の磁石に一様に分布していると仮定すると、
実は「磁石が作る磁場も(微小な)環状電流が作る磁場と同じ形になる」という事を理論的に示せるのです。そこで、磁石が作る磁場に関しても同様に、
磁場に関するガウスの法則が成立する、という理論的な流れがあります。

磁石に関しては、物質の磁性の観点から理論的に話を突き詰めようとすると実は話が結構面倒で、電磁気学だけでなく量子力学の理論もどうしても必要になるというのが物理学の理論の現在の見解になっています。

ガウスの法則が成立する由来に関する、数式的な考察。
理論的には、電場の場合と磁場の場合とでは少しだけ話が違ってくると考えられています。
磁場のほうに関して、この図で、i:電流 l(エル):電線の長さ ×:外積(ベクトル積)の記号
静磁場を囲む閉曲面での法線面積分がゼロになるのは「磁気単極子は単独で存在せず、必ず磁気双極子の形で現れる」という事を表すとも解釈できます。

真空の誘電率に関わる円周率とガウスの法則との関係

さて、最後にクーロンの法則の比例定数を円周率を含んだ形で表す事がある事について、ガウスの法則との関連からの理由を考察してみましょう。

前述の「クーロンの法則からガウスの法則を導出する方法」を見ると、
途中で使っている「ガウスの積分」の公式には球の表面積由来の円周率が含まれていますが、
結果のガウスの法則の式には円周率は含まれていません。

これはもちろん、クーロンの法則のほうの比例定数を「円周率の逆数と別の比例定数の積」の形で表していたので、式の中で円周率が分子と分母で約分されて「1になって消えた」ためです。

逆に、もしクーロンの法則の比例定数を一括でkで表した場合には、ガウスの法則には見かけ上、円周率がくっついて来るわけです。(もちろん、定数の数値的な値自体はどちらの場合でも同じです。)

◆比例定数に円周率を含まなかった場合のガウスの法則の形

$$\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\int_S\large{\frac{kQ\overrightarrow{r}}{r^3}}\cdot d\overrightarrow{s}=kQ\cdot 4\pi=4\pi kQ$$ 尚、この結果の状態でk=1/(4\(\pi\epsilon_0\)) を代入しても、もちろん一般的なガウスの法則の形になります。

つまり、敢えて「円周率を含んだ比例定数」を考える事により、クーロンの法則からガウスの法則を導出した時に、逆に「円周率を定数として含まない形で記述できる」という、ちょっとした数式上のカラクリがあるわけです。
図形的な球や球面に由来して、円周率が隠れた形で物理学の理論に関わってくる例の1つになります。

ガウスの積分【距離の逆2乗に大きさが反比例するベクトル場】

ガウスの発散定理の応用として、「ガウスの積分」と呼ばれる定積分があります。
また、そのガウス積分の応用例として、電磁気学における「ガウスの法則」をクーロンの法則から数式的に導出する理解の仕方があります。

関連(基本知識):■ベクトルと内積 ■微分の公式集 ■積分の基本計算

関連(応用):■ベクトル解析 ■法線面積分 ■ガウスの発散定理

◆非常に名称が紛らわしいのですが、用語の使い分けは次のようになります。

  • ガウスの発散定理」(ガウスの定理)
    数学の定理で、法線面積分と体積分について成立する一般的な関係
  • ガウスの積分」【このページで説明している公式】
    数学で公式が存在する法線面積分(の定積分)で、対象の関数は
    「大きさが距離の2乗に反比例する3次元のベクトル場」
    (ベクトル場とは成分が座標 x, y, z を変数とする多変数関数であるベクトル関数)」
  • 「ガウスの法則」
    物理上の電荷に対する定量的な法則で、クーロンの法則のより一般的な表現。
    数式的に、上記2つの事項と直接的に関わる。

ガウスの積分(公式)

ガウス積分とは、ベクトル場の大きさが「原点からの距離の逆2乗に比例する」(※)形である場合の、閉曲面全体に対する法線面積分の事を指します。
すなわち、式で書くと次のベクトル場に対する閉曲面全体に対する法線面積分です。(簡単のため、比例定数は1とします。)

※「距離の逆2乗に比例する」=「距離の2乗に反比例する」
いずれも1/(r) が掛け算されている事を意味します。

$$r=\sqrt{x^2+y^2+z^2}\hspace{3pt}のもとで、\overrightarrow{r}=\left(\frac{x}{r^2}\hspace{2pt},\hspace{2pt}\frac{y}{r^2}\hspace{2pt},\hspace{2pt}\frac{z}{r^2}\right)\hspace{2pt}に対して、$$

ガウスの積分

$$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}\hspace{5pt}をガウスの積分と言います。$$

☆ここでの「距離の『3乗』」は、全体のベクトルの向きを単位ベクトルで表す都合上出てくる、見かけ上のものです。中身としては、大きさが1の単位ベクトルを作るための1/rと、考えている対象の関数の1/(r)の積という事になります。

この時に閉曲面Sはどんな形でも、どんな場所にあってもよいのですが、
どのような閉曲面に対してであろうと、ガウス積分が取り得る値は3つしかないという公式があります。

公式:ガウスの積分の計算結果

原点と閉曲面の位置関係によって結果が分かれます。

  1. 原点が閉曲面Sの「外側」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0$$
  2. 原点が閉曲面Sの「曲面上」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=2\pi$$
  3. 原点が閉曲面Sの「内側」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=4\pi$$

2番目(曲面上)と3番目(曲面の内部)の結果は、より詳しくは、ある極限値としてこの結果が成立します。また、物理学ではこのようには説明せず、値が無限大になってしまう点を「特別扱い」できるデルタ関数という特殊な関数を使ってここで説明する内容を表現する事も多いです。

物理学への応用:電磁気学における「ガウスの法則」

ガウスの積分の応用として代表的なものが、電磁気学における「ガウスの法則」です。クーロンの法則を一般化した法則で、4つのマックスウェル方程式のうちの1つで静電場についての式です。

電磁気学におけるガウスの法則

電荷(※)を囲む閉曲面をSとする時、
法線面積分を計算すると必ず次のようになっているという関係がガウスの法則と呼ばれています。 $$\large{\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\frac{Q}{\epsilon_0}}$$ $$\epsilon_0 はクーロン力を表す時に使う比例定数で、\epsilon_0=8.8543×10^{-12}$$ ※ここで言う「電荷」は、点電荷でも、分布した電荷でも同じ結果になります。

この法則の内容を言葉で簡単に言うと、静電荷を囲む閉曲面を領域を考えるとき、その閉曲面がどんな形状であろうとも法線面積分の値は「内部の電荷の電気量のみに依存する」という事です。

「ガウスの法則」は物理学上の法則なので「とにかく成立する」で終わり、でもよいのですが、クーロンの法則が電荷同士の距離の逆2乗に比例する形である事から、法線面積分を計算するとガウスの積分の形になっています。

そのため、クーロンの法則から出発して電場(+1[C]の電荷が受ける電気力)の法線面積分を計算するとガウスの法則の形が得られるという論理も成り立つのです。

公式の証明

では、ガウスの積分に関して成立する公式の証明をしてみましょう。

次の3つの場合分けがあります。

原点が閉曲面の「外側」にある場合
原点が閉曲面の「曲面上」にある場合
原点が閉曲面の「内側」にある場合 

この証明にはガウスの発散定理の結果と、ベクトル場に関する発散(div)の計算を使います。

$$以下、対象とするベクトル場を F=\frac{\overrightarrow{r}}{r^3}とおきます。$$

①原点が閉曲面の「外側」にある場合

この場合、ここで対象のベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を強引に計算すると、実は必ず0になるという結果が得られます。

計算は少し込み入って面倒ですが、高校の微積分の知識と、偏微分の定義(1つの変数だけに着目し、他の変数は定数扱いする)だけ知っていれば計算する事ができます。

まず、面倒なのを承知でrをx、y、zでの表現に戻します。

$$r=\sqrt{x^2+y^2+z^2}=\large{(x^2+y^2+z^2)^{\frac{1}{2}}}ですから、$$

$$\overrightarrow{F}=\large{\frac{\overrightarrow{r}}{ r^3}}=\Large{\frac{1}{ (x^2+y^2+z^2)^{\frac{3}{2}}}\overrightarrow{r}}$$

次に、ベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を計算します。
この時に、座標成分が具体的にx、y、zで表される必要がさらにありますから、
\(\overrightarrow{r}\)を成分で表します。
しかし、そもそもこのベクトルの座標成分をx、y、zとおいていたのですから、
そのまんま\(\overrightarrow{r}=(x,y,z)\)という形になります。

ですから、考察対象のベクトル場\(\overrightarrow{F}\)を成分で表すと次のようになります。

$$\overrightarrow{F}= \large{ \frac{\overrightarrow{r}} { (x^2+y^2+z^2)^{\frac{3}{2}} } }\large{ = \left( \frac{x}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{y}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{z}{(x^2+y^2+z^2)^{\frac{3}{2}}} \right)} $$

これで、ベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を計算できる「はず」ですね。
面倒ですが丁寧に計算すると前述の結果を得るのです。

1つずつ、成分を偏微分してみると次のようになります。
商の微分公式と、合成関数の微分公式(※)とを使って丁寧に微分します。

(※この場合は、x、y、zは互いに独立変数ですから、合成関数の公式は偏微分に関する合成関数の公式ではなく、通常の1変数関数の合成関数の微分公式を使います。仮に、x=g(y,z) のように表せるのであれば偏微分の合成関数の公式を使う必要があります。ここでの場合は、そうではなくて3変数が互いに独立であるという事です。)

では計算です。
商の微分公式そのままであり、分母は2乗されて、分子は引き算の形で2つ項ができます。その際の微分する時に(通常の)合成関数の微分公式を使っています。

$$\large{ \frac{\partial}{\partial x} \frac{x}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- x\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2x } {(x^2+y^2+z^2)^3} }$$

yとzについても同様です。

$$\large{ \frac{\partial}{\partial y} \frac{y}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- y\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2y } {(x^2+y^2+z^2)^3} }$$

$$\large{ \frac{\partial}{\partial z} \frac{z}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- z\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2z } {(x^2+y^2+z^2)^3} }$$

これらを加え合わせたものが div \(\overrightarrow{F}\)であり、
(x+y+z1/2で因数分解できる事に注意すると次のようになります。

$$\mathrm{div}\overrightarrow{F}=\frac{ 3(x^2+y^2+z^2)^ {\large{\frac{3}{2}}} -3x^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} -3y^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} -3z^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} } {(x^2+y^2+z^2)^3}$$

$$=\frac{(x^2+y^2+z^2)^{\large{\frac{1}{2}}}(3x^2+3y^2+3z^2-3x^2-3y^2-3z^2)}{(x^2+y^2+z^2)^3}=0【計算おわり】$$

このように、計算は結構面倒ですが「結果は0」という事になります

さてここで、ガウスの発散定理によればベクトル場の法線面積分は「ベクトル場の『発散』の体積分に等しい」という事でした。
--しかし、となると「計算結果が0になる関数」の積分ですから、これは必ず0になると言えます。(通常の積分でも体積分でもこの点については同じ事が言えます。)
それで証明が完了するのです。

$$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_V\mathrm{div}\frac{\overrightarrow{r}}{r^3}dv【∵ガウスの発散定理】$$

$$=\int_V\hspace{3pt}0\hspace{3pt}dv=0【証明おわり】$$

ただしこの結果は、「原点が閉曲面の外側にある」場合の話である事には注意が必要です。
閉曲面上にある場合や、閉曲面の内側にある場合には別の結果になるのです。

②原点が閉曲面の「曲面上」にある場合

原点が閉曲面上にある場合でも、ベクトル場の発散 div \(\overrightarrow{F}\) を計算すると「0」になるという事は同じです。

しかし、1つ問題があって、このベクトル場\(\overrightarrow{F}\)は、「原点 (0,0,0)【つまりx=y=z=0の時】で定義できない」という事があります。

従って、関数を定義できないその点が閉曲面上にあるという事は、そもそも法線面積分を考える閉曲面Sについて、通常の閉曲面とは違うものを考える必要があります。

具体的には、原点が乗っている点を除いたものをそもそも考えなければならず、もとの閉曲面から原点付近のわずかな領域を除いた部分を改めて閉曲面Sとします。

ただし、この時に除かれる「原点を含む領域」は、その大きさに関わらず、残った閉曲面における法線面積分の値は一定で\(2\pi\)になる
 というのが公式のより詳細な内容です。
つまり、そのような領域の大きさを0にする極限においても値は一定で\(2\pi\)になる、という事です。

$$★この議論は、もちろんベクトル場が F=\frac{\overrightarrow{r}}{r^3}である前提のもとでの話です。$$

この時に、原点を含む「面だけ除く」事はできなくて、体積を持った領域ごと除く事になります。そして、その領域の形状は「半球」とするのがポイントなのですが、これには理由が2つあります。(上手にきれいな半球を繰り抜けるかどうかは、閉曲面を多面体に近似することで可能になります。)

  1. 球面であれば、曲面に対する法線とベクトル場の方向が同一直線上に重なり、法線面積分を直接計算できる。
  2. どのような形状の領域でも、除いた部分の法線面積分はある一定値である事が示される。つまり、球面で計算した時の値と他の形状で計算した時の値は必ず同じである。

2番目の理由についての根拠は、原点を含む領域を境界を共有する形で2つの形状で取り除いてみた時に、新しくできる「閉曲面」(滑らかでない部分はありますが)から見て原点が「外部」にある事によります。この時に、考えているベクトル場のもとでは法線面積分は0になります。
さらに、その新領域が異なる2つの形状に由来するSとSに分けられるとすると、元々考えていた大きな領域Sから見た時の「外側に向かう方向」が、繰り抜いた部分だけを考えてできた閉曲面においては「SとSの片方は『外側向き』でもう片方は『内側向き』」となります。
つまり、ややこしいですが、法線面積分について片方の符号を変えたものを加えた合計が0、結果的には引き算したものが0になります。
――という事は、2つの法線面積分は等しい値(符号も含めて)になる、という事です。

$$★この議論は、もちろんベクトル場が F=\frac{\overrightarrow{r}}{r^3}である前提のもとでの話です。$$

$$\int_{SA}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s} -\int_{SB}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0\Leftrightarrow \int_{SA}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{SB}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}$$

さて、そこで除外する微小領域として半球を考えると、原点を中心にする半球を考えるのですから、半径をρとすると球面の各点でベクトル場の大きさは等しく、1/(ρ)となります。方向については、各点で球面に垂直で外側向きですから、法線との内積は1となり、面積sを変数とする通常の定積分になるのです。

通常は、面積sを変数とする関数というのはすごく考えにくいものなのですが、この場合について言えば半径ρというのは何らかの定数を考えているのであり、変数としての面積sに無関係であるから定数扱いです。従って積分の原始関数は「1次関数s」です。これを、0から\(2\pi\rho^2\)(半球の表面積)まで積分すればよく、結果は\(2\pi\rho^2\)です。

$$\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\frac{1}{\rho^2}\int_{S0}ds=\frac{1}{\rho^2}\left[s\right]^{\large{2\pi\rho^2}}_0=\frac{1}{\rho^2}\cdot 2\pi\rho^2=2\pi$$

こういう結果であり、半径の大きさに関わらず値は一定値という事になります。

さて、さらに元の閉曲面Sから半球Sを繰り抜いて原点の周りだけ少しへこんだ形になった閉曲面を改めてSとします。このSから見ると、原点は外部に存在します。従って、Sに対する法線面積分の値は0です。

しかし他方で、Sに対する法線面積分はSの法線面積分(半球部分除く)と符号を変えたSの法線面積分(半球面)の合計値です。

のほうの符号を変えるのは、原点を中心に半球を単独で考察した時と、元々の大きな閉曲面Sで考えた時の「外側への向き」が逆になってしまうためです。結果的に引き算する形となります。

$$\int_{S1}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0かつ、\int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}-\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{S1}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}$$

$$よって、\int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}-\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0 \Leftrightarrow \int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=2\pi$$

ここで、繰り抜く半円の半径は任意の値でこの事が成立するのでしたから、半球の半径ρ→0の極限でも同じ値であり、その意味においてガウス積分の公式が成立します。

③原点が閉曲面の「内側」にある場合

閉曲面の内部に原点がある場合にも、閉曲面上に原点がある場合と同じ問題が発生します。

法線面積分を考える分には、一見すると「値が無限大になってしまう原点」は積分経路から外れていますが、ガウスの発散定理から法線面積分は体積分で表せる「はず」ですから、
体積分を行う領域内で問題が発生します。

つまり、この場合も定積分を実行するには極限値を考える必要があります。

結論を言うと、本来の全体の領域から「原点を囲む微小な球をくり抜いて除いた」ようなものを領域として考えます。

ガウスの積分において原点で領域を定義できないので、
原点を含む領域を球状に除いて、球の半径を0に近づけた時の極限値として
ガウスの積分の値を計算します。

その原点を囲む球状の領域では、上記の場合と同じ考え方により、法線面積分は球の半径にかかわらず一定値になります。この場合の値は\(4\pi\)です。そこで、半径を限りなく小さくしてもその値として計算できるので、極限値として最初に考えていたガウスの積分の値も\(4\pi\)になる、という事です。

原点が想定している領域の表面上にある時との2倍の差は、「球」と「半球」の違いであるという事になるわけです。

角運動量の数学

物理学で考える「角運動量」は回転運動を表す物理量です。外積ベクトルを使って表します。

◆関連:ベクトルの基本事項と内積

角運動量ベクトル

角運動量ベクトル(angular momentum)の定義

角運動量ベクトルは、次のように外積ベクトルによって定義されます。 $$角運動量ベクトル:\overrightarrow{L}=\overrightarrow{r}×\overrightarrow{p}$$ $$物体の位置ベクトル:\overrightarrow{r}=(x,y)$$ $$運動量ベクトル:\overrightarrow{p}=m\overrightarrow{v}$$ $$\left(物体の質量:m\hspace{10pt}速度ベクトル:\overrightarrow{v}=\left(\frac{dx}{dt},\frac{dy}{dt}\right)\right)$$

◆これに対して、「角速度ベクトル」(あるいは「回転ベクトル」)は
「物体が回転軸周りの同一平面内で回転運動をしている時に、向きは物体の回転方向が右ねじを締める向きに一致するの軸方向で、大きさは角速度ω【rad/s】に等しい」というベクトルです。$$角速度ベクトルの大きさ:|\overrightarrow{\omega}|=\omega【rad/s】$$$$角速度ベクトルの向き:\overrightarrow{\omega}の向きは軸方向で、右ネジを締めた向きが回転方向に一致する向き$$ 回転面の中心を基準点とした場合には、角速度ベクトルと角運動量ベクトルの向きは一致します。

角運動量を外積ベクトルで表す事には幾つかの意味があります。

まず、回転の向きに関しては時計回り(順方向)と反時計回り(逆方向)という事もありますが、回転している「面」の事も含みます。例えば、空間内にxyzの直交座標を考えた時に、同じ速さで同じの形の軌道を描いて回転している場合であっても、「xy平面での回転」「yz平面での回転」は当然「異なる運動」であると言えます。

そこで外積ベクトルの向きは、回転面の「軸」の向きに相当する方向を表す事になります。物体の運動方向が基準点から見て時計回り方向なのか、それとも反時計回り方向なのかも外積ベクトルの向きで表す事ができるわけです。(外積ベクトルの符号が反転すると運動量ベクトルの符号が反転し、全く反対の方向への運動を表す事になります。)

角運動量ベクトルと外積
角運動量ベクトルは外積ベクトル(ベクトル積、クロス積)で表します。
角速度ベクトルと角運動量ベクトル
角速度ベクトルと角運動量ベクトルの違いに注意。

また、ある点を基準として同じ角速度で回転をしていても、その点の近くを回転している時と遠くを回転している時とでは、物体の速度は異なります。
「物体の位置ベクトル」\(\overrightarrow{r}\) は、回転の中心からの「距離」も情報として含むので角運動量ベクトルを構成する要素として使わます。(この事は「力の能率(モーメント)」と関係します。)

外積ベクトルで表されているという事は、2つのベクトルが平行である場合(成す角度が0または \(\pi\)である場合)には値が0である事になります。これは、物体の運動がある点から直線状に遠ざかっていく、あるいは直線状に近寄ってくるような場合であり、「回転」の様子がない事を表しています。

力の能率(モーメント)

力の能率(あるいは「力のモーメント)」moment of force)は角運動量ベクトルの時間微分として表されます。ベクトルに対する微分は、具体的には成分に対する微分として定義されます。

ここで角運動量ベクトルの定義通りの式に時間微分をすると考えると、外積ベクトルに対する微分をするいう事になりますが、これは通常の積の形に対する微分公式と同じ形が成立します。【証明は外積の成分表示を使うと比較的簡単です。】

すなわち、次式のように書けます。

$$\frac{d}{dt}\overrightarrow{L}=\frac{d}{dt}\left(\overrightarrow{r}×\overrightarrow{p}\right)=\frac{d\overrightarrow{r}}{dt}×\overrightarrow{p}+\overrightarrow{r}×\frac{d\overrightarrow{p}}{dt}$$

【ここで、位置ベクトルの時間微分は速度ベクトル\(\overrightarrow{v}\)である事に注意します。】

$$=\overrightarrow{v}×\overrightarrow{p}+\overrightarrow{r}×\frac{d\overrightarrow{p}}{dt}=m\left(\overrightarrow{v}×\overrightarrow{v}\right)+\overrightarrow{r}×\frac{d\overrightarrow{p}}{dt}=\overrightarrow{r}×\frac{d\overrightarrow{p}}{dt}$$

【最初のtで微分した後の第1項は0になり、第2項だけが残るという事です。】

ところで、運動量ベクトルの時間微分とは何であったかというと「力ベクトル」\(\overrightarrow{F}\)であったわけです。(それが運動方程式が表現している事そのものです。)

という事は、角運動量ベクトルの時間微分は結局「位置ベクトル」と「力ベクトル」との外積という事になるわけです。

$$\frac{d}{dt}\overrightarrow{L}=\overrightarrow{r}×\overrightarrow{F}$$

この外積ベクトルの事を、「力の能率」あるいは「力のモーメント」と呼びます。

積の形に対する微分公式と同じ形の公式が外積ベクトルを構成するベクトルにも成立します。

力の能率は、意味としては「大きさを持つ物体に力を働かせる時、ある支点から距離が離れているほど回転させる効果は大きい」というものですが、より詳しくは角運動量ベクトルの時間変化という事になるわけです。

力の能率(モーメント)
「てこ」(レバー)を使う時などに、支点からの距離があったほうが回しやい事を表現します。

角運動量の保存則

物体に働く力が「中心力」で、原点を中心にとった時には角運動量は保存量となります(角運動量保存則)。

この時には、角運動量ベクトルがどちらに向いているかはその時々によって異なりますが、
「力」の向き――つまり「運動量ベクトルの時間微分」の向きは、常に中心を向いている事を意味します。

従って、角運動量ベクトルが具体的にどう表されるかはその時々により異なりますが、
力の能率は中心力のもとでは常にゼロベクトルである」と言えるわけです。

$$中心力が物体に働く時:\overrightarrow{r}×\overrightarrow{F}=0【ゼロベクトル。\overrightarrow{F}=C\overrightarrow{r}と書けるから。】$$

ところで、力の能率は角運動量ベクトルの時間微分であったわけですから、中心力のもとではそれが0になる事を意味します。

$$\frac{d}{dt}\overrightarrow{L}=\overrightarrow{r}×\overrightarrow{F}=0$$

時間微分が0であるという事は、「時間によって変化しない」事を意味します。(実際、ベクトルの各々の成分に対して、その形の微分方程式の解は時間に関して「定数」という事になります。「時間に依存しない」形となるわけです。)

$$\frac{d}{dt}\overrightarrow{L}=0\Leftrightarrow \overrightarrow{L}は定ベクトル(時間に依存しない。「保存」する)$$

この事を、「中心力のもとで角運動量は保存する」と表現します。
その事を、力学では角運動量保存則とも言います。

中心力と角運動量の保存

中心力のもとで軌道が円ではなく楕円のようになる場合にでもこの角運動量保存則は成立するので、中心力の発生源に近い場所では物体の運動量(および速さ)が大きくなり、発生源から離れているほど物体の運動量(および速さ)は小さくなる事を表しています。

剛体の角運動量

さて、では大きさを持った立体的な球とか円盤とか(変形しない事を仮定した場合に剛体と呼びます)が、
中心に立てた軸周りに「自転」している形式の回転の場合にはどうなるでしょうか。

この場合には、微小な体積領域で通常の角運動量を考えて、質量を位置の関数としての「密度」で表し、それに体積要素を乗じる事で表現します。それを領域全体で積分する事で「全角運動量」を計算するという形の理論になっています。

$$微小領域の質量:m=\rho dv【mと\rhoは\overrightarrow{r}の関数】$$

$$微小領域の角運動量ベクトル:\overrightarrow{r}×(\rho dv\overrightarrow{v})=\rho(\overrightarrow{r}×\overrightarrow{v}) dv$$

ここでは自転的な運動、つまり回転軸の方向が不変である場合を考えます。
その場合は、速度ベクトル\(\overrightarrow{v}\)は「角速度ベクトル」\(\overrightarrow{\omega}\)と位置ベクトル\(\overrightarrow{r}\)の外積として表せるという公式を使えるので、角運動量ベクトルの式を変形できます。

$$公式:\overrightarrow{v}=\frac{d\overrightarrow{r}}{dt}=\overrightarrow{\omega}×\overrightarrow{r}を使えるので、$$

$$\rho(\overrightarrow{r}×\overrightarrow{v}) dv=\rho\left(\overrightarrow{r}×(\overrightarrow{\omega}×\overrightarrow{r})\right) dv$$

この関係式は、より一般的に角速度ベクトルが定ベクトルではなく時間的に変化する関数になっている場合でも成立します。

角速度ベクトルの公式
原点を回転軸上にとった時、角速度ベクトルと位置ベクトルが作る平面と、速度ベクトルとは常に垂直になっています。

外積ベクトルの公式(「ベクトル三重積」)を使うと、もう少し計算を進められます。

$$\rho\left(\overrightarrow{r}×(\overrightarrow{\omega}×\overrightarrow{r})\right) dv=\rho\left(|\overrightarrow{r}|^2\overrightarrow{\omega}-(\overrightarrow{\omega}\cdot\overrightarrow{r})\overrightarrow{r}\right) dv$$

これを領域内で積分(体積分)したものが、剛体全体での角運動量の合計(全角運動量)になります。
積分する領域はVと置いておきます。
◆参考:ガウスの発散定理(体積分の考え方と公式)

$$全角運動量:\overrightarrow{L}=\int_V\rho(\overrightarrow{r}×\overrightarrow{v}) dv=\int_V\rho\left(|\overrightarrow{r}|^2\overrightarrow{\omega}-(\overrightarrow{\omega}\cdot\overrightarrow{r})\overrightarrow{r}\right) dv$$

内積はスカラーである事に注意して、位置ベクトルの成分表示を(x,y,z)とし、角速度ベクトルの成分表示を(ω,ω,ω)とするとさらに次のように書けます。

$$\overrightarrow{L}=\int_V\rho(x^2+y^2+z^2)\overrightarrow{\omega}dv+\int_V\rho(x\omega_x+y\omega_y+z\omega_z)\overrightarrow{r}dv$$

ここで全角運動量のベクトルも成分ごとに分けると、それら各成分は角速度ベクトルの成分の線型結合で表せるという、ちょっとした規則性を見出せます。全角運動量ベクトルのx成分を例として書いてみると、次のようになります。

$$\overrightarrow{L}のx成分:L_x=\int_V\rho\omega_x(x^2+y^2+z^2)dv-x\int_V\rho(x\omega_x+y\omega_y+z\omega_z)dv$$

$$=\omega_x\int_V\rho(x^2+y^2+z^2)dv-\int_V\rho(x^2\omega_x+xy\omega_y+xz\omega_z)dv$$

$$=\omega_x\int_V(y^2+z^2)\rho dv-\omega_y\int_Vxy\rho dv-\omega_z\int_Vxz\rho dv$$

【xの項が引き算で消える形になっています。】

全角運動量ベクトルのy成分とz成分についても同様の形の式になり、全角運動量はある正方行列Iと角速度ベクトルの積で表現できる事が言えます。その行列の成分Iijの事を「慣性テンソル」と呼び、その対角成分【I11,22,I33】は特に「慣性能率」とも呼ばれます。

$$ある3×3行列Iを使って、\overrightarrow{L}=I\overrightarrow{\omega}とも書ける。$$

一様な材質でできた対称性のある剛体の場合(球、円柱、円盤等)、具体的な積分の計算を手計算でも実行する事ができて、慣性能率は比較的簡単な形で表す事ができます。

これらの事は、物理学を専攻する学生さん以外にも、ベクトルやベクトルの外積の応用例を見るのに非常に良い題材の1つになっていると思います。

【証明】ガウスの発散定理

電磁気学などでよく使う「ガウスの発散定理」(「発散定理」「ガウスの定理」とも)の証明をします。
ベクトル解析の分野の中の基礎的で重要な定理の1つになります。

電磁気学の「ガウスの法則」は、「ガウスの発散定理」と関係が深いですが、あくまで静電場に関して成立する事実関係としての「法則」を表すものとして用語の使い分けがなされるのが一般的です。

関連事項(内部リンク)

定理の内容

$$以下、ベクトル場を\overrightarrow{F}=(F_1,\hspace{2pt}F_2,\hspace{2pt}F_3)=(F_1(x,y,z),\hspace{2pt}F_2(x,y,z),\hspace{2pt}F_3(x,y,z))\hspace{2pt}とします。$$

ガウスの発散定理とは次のようなものです。

ガウスの発散定理

ある閉曲面内の体積分と法線面積分について、次の関係式が成立します。 $$\int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}$$ $$あるいは、\int\int\int_V \mathrm{div}\overrightarrow{F} dxdydz = \int\int_S F_1 dzdy + \int\int_S F_2 dzdx+ \int\int_S F_3 dydx$$ $$S:閉曲面 V:閉曲面で囲まれた空間領域 $$ $$d\overrightarrow{s}=(ds_x,ds_y,ds_z)【成分には正負の符号がある事に注意】$$ 法線面積分を考えた時に使う面積要素 dxdy 等は、dsx 等と同じく、符号を持つので注意。曲面に表と裏を必ず決め、「裏→表」の向きに面積要素のベクトル\(d\overrightarrow{s}\) を立てて向きと成分の符号を考えます。

特に、次の3式が同時に成立し、加え合わせる事で定理全体が成立する事になります。$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_S F_1 dydz$$ $$\int\int\int_V\frac{\partial F_2}{\partial y}dxdydz=\int\int_S F_2 dzdx$$ $$\int\int\int_V\frac{\partial F_3}{\partial z}dxdydz=\int\int_S F_3 dydx$$

積分の表記の仕方としては、次のように記す事もあります。これらは書き方を変えているだけで、全く同じ積分を表すという意味です。dxdyなどの表記の場合に積分記号を2つ重ねる表記にするのは、具体的な計算をする時には重積分の形になる事によります。$$\int_SF_1ds_x=\int\int_SF_1dydz$$ $$\int_SF_2ds_y=\int\int_SF_2dzdx$$ $$\int_SF_3ds_y=\int\int_SF_3dxdy$$

基本的な考え方は、複素関数論におけるグリーンの公式に似ています。要するに、ある多変数のスカラー関数について、変数が2つの特定の値の時に差をとったものは「その関数の偏微分の定積分」に等しいはず・・という発想を使います。

「スカラー関数の偏微分」を「微分する変数で定積分」する事により、特定の値のスカラー関数の差を作る事ができます。重積分の中でこの考え方を使う時は、偏微分に対する定積分の積分区間の端は一般には「関数の形」になります(yで積分するなら例えばy1=y1(x)というxの関数)。

発想自体は実はすごくシンプルなのですが、幾つか知っておかないとならない定義や公式がある事が「難しい」要因になります。特に必要になる事項を4つほど簡単に整理しておきます。

使う定義と公式の整理
①ベクトル場の「発散」の定義

ベクトル場\(\overrightarrow{F}\) に対する「発散」は次のようなスカラー関数です。 $$\mathrm{div}\overrightarrow{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y} +\frac{\partial F_3}{\partial z}$$

②法線面積分の定義

法線面積分は、次のように計算できるものとして定義されます。 $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int_S (F_1 ds_z + F_2 ds_y + F_3 ds_z)=\int_SF_1 ds_x+\int_SF_2 ds_y+\int_SF_3 ds_z$$積分記号に添えてあるSは、「特定の閉曲面S」の表面の全域(あるいはそれに対応する領域)に渡って積分をするという意味です。dsz および dxdy 等を面積要素とも言います。(dsz および dxdy は共にxy平面上の領域の面積要素。)

③ \(d\overrightarrow{s} \)の座標成分と射影面積の関係

$$ d\overrightarrow{s}=( ds_x , ds_y , ds_z ) $$

  • \(|ds_x| \):微小領域の「yz平面」への射影領域の面積
  • \(|ds_y| \):微小領域の「xz平面」への射影領域の面積
  • \(|ds_z| \) :微小領域の「xy平面」への射影領域の面積

特に三角形の微小領域を考えると、外積ベクトルの性質によりこれらの関係が明確になります。

④体積分と重積分の関係

体積分は、特定の空間領域の全域に渡ってスカラー関数を積分するものです $$\int_V G(x,y,z) dv=\int\int\int_V G(x,y,z) dxdydz$$。dv =dxdydz を体積要素とも呼びます。
特別な場合では体積要素 dv のまま具体的な計算もできますが、通常は体積要素を dxdydz の形にして重積分にしないと計算は難しい事が多いです。
具体的な関数があって積分の値を計算する時は、次のように、通常の重積分と同じく累次積分を行います。 $$\int\int\int_V G(x,y,z) dxdydz=\int_{Z1}^{Z2}\int_{Y1}^{Y2}\int_{X1}^{X2} G(x,y,z) dxdydz$$ この時に積分する変数の順番は変えられますが、積分する領域の形状によっては、初めに積分する2つの積分区間は定数ではなくて関数になります。ここでの例だと X1=X1(y,z), Y1=Y1(z) 等です。

発散定理(ガウスの定理)の考え方②

発散定理における閉曲面の扱い

積分する範囲が「閉曲面」である事は定理の性質・証明において重要です。

閉曲面とは球や楕円体などの閉じられた曲面の事です。
(ただし直方体等の「角ばった箇所」がある閉じられた立体においても、定理は成立します。証明の過程を見ると、その事は分かりやすいかと思います。)

閉曲面は、凹んだような箇所がある曲面である場合もあります。
しかし、発散定理の証明においては実は「凹みがない」球のような曲面で成立する事を示せば十分です。それは、面積分に関して曲面は分割するできるからです。

例えば閉曲面を平面で真っ二つにした場合には、切断面の部分(2つに分かれた閉曲面の共有部分)では2つの積分の値が絶対値は同じで逆符号になります。それを加え合わせるとゼロになります。これは、共有される切断面においては「ベクトル場は同じ」で分割された2つの閉曲面同士で「法線ベクトルが絶対値は同じで逆符号」である事に起因します。

そのため、凹みのある閉曲面は出っ張ったところで切断して2つ以上の閉曲面に分けてしまう事により、法線面積分も2つの「凹みのない」閉曲面での法線面積分の和にできるのです。
(体積分に関しても、閉曲面を分割すると分割した領域での体積分を加えれば全体になります。)

つまり、発散定理の証明は「凹みのない」閉曲面で示されれば、凹みのある閉曲面で成立する事も示されるという事です。

発散定理(ガウスの定理)における閉曲面の扱い

証明

まず、次式から証明します。閉曲面は凹みがないものとします。

$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_S F_1 dydz$$

これ1つが証明できれば、他の2式も同じ形なので全く同様に証明できます。
最後に3式を加え合わせれば発散定理の形になります。

積分する前の段階で微小領域を考えると、\(d\overrightarrow{s}=( ds_x , ds_y , ds_z )\)の第1成分dsの絶対値は微小領域のyz平面への射影面積になります。

ところで、yz平面への「同じ射影の領域」を持つ閉曲面の微小領域は必ず2つ存在し、それらの第1成分は必ず符号のプラスマイナスが異なります。同じ射影の領域を持ちますから\(d\overrightarrow{s}\)の第1成分は「同じ大きさで異符号」です。

しかも、その組み合わせの合計で閉曲面は全て覆える事になります。ベクトル場の第1成分Fとdsの積を合計したものはyz平面上の積分になります。【Fは関数F(x,y,z) である事に注意。】
ただし、yz平面上で積分をすると、対応する閉曲面の領域は2つありますから、dsの符号がプラスになる部分とマイナスになる部分に分けられます。

射影領域と閉曲面の関係
凹みのない閉曲面ではxy平面への同一の射影領域を持つ部分が2つ存在し、それらの微小領域に対する法線ベクトルのz成分は互いに異符号になります。yz平面、xz平面への射影についても全く同様に考える事ができます。

ここで、閉曲面Sのyz平面への射影領域であり、yz平面での積分範囲でもある領域をSyzと置きます。
この平面領域Syzは、「表と裏」に関して次の約束事をしておきます:

◆約束事:平面領域Syz
x方向のプラス方向に面した部分が「表」でx方向のマイナス方向に面した部分が「裏」
と決めます。
つまりこの領域Syz上での面積要素のベクトルは\(d\overrightarrow{s}=(ds_x,0,0)\) であり「ds およびdydzの符号は、必ずプラス符号として考える」という事です。
発散定理(ガウスの定理)の証明
ベクトル場の第3成分とxy平面(の射影)での積分を考えた場合はこの図のようになります。図の下側の領域では「もとの閉曲面Sでの面積要素」の符号が全てマイナスなので、「面積要素がプラス符号の平面領域(図のSxy)」での積分として表記する場合には積分全体に対してマイナス符号をつける形になります。

またyとzの関数X(y,z)とX(y,z)を考えて、
それらは各々「yz平面への同じ射影領域を持つ」2つの微小領域でのx座標であるとします。
(領域を2分割して考える時に「x座標の『yとzによる関数』の形」が違うためにそのように考えます。)
すると、閉曲面全体のベクトル場の第1成分Fのyz平面上の領域Syzでの積分は、
次のように差の形で表せる事になります。

$$\int_SF_1ds_x=\int\int_{Syz}F_1(X_B,y,z)dydz-\int\int_{Syz}F_1(X_A,y,z)dydz$$

第1項目はもとの閉曲面で面積要素のベクトルの成分dsがプラス符号である領域の積分です。
第2項目はもとの閉曲面で面積要素のベクトルの成分dsがマイナス符号である領域の積分であり、
領域Syzでの積分では面積要素はプラス符号で扱うと約束しているので「マイナス」は積分全体につける形をとっているわけです。

ここで、差の形になっている部分を、「x方向の『偏微分の定積分』」として考える事ができます。

$$\int\int_{Syz}F_1(X_B,y,z)dydz-\int\int_{Syz}F_1(X_A,y,z)dydz=\int\int_{Syz}\left(\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dx\right)dydz$$

領域Syzでの積分についてもy方向とz方向の積分区間を書くと次のようになります。

$$\int\int_{Syz}\left(\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dx\right)dydz=\int_{\large{Z_B}}^{\large{Z_A}}\int_{\large{Y_B}}^{\large{Y_A}}\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dxdydz$$

$$=\int\int\int_V\frac{\partial F_1(x,y,z)}{\partial x}dxdydz$$

ここで重積分の形にした箇所のdx、dy、dzは全てプラス符号です。つまり「積分変数自体の符号は気にしない」で計算可能な、通常の積分として考えてよい事になります。(体積要素としてdxdydzをdvと置き、1つの塊として見た時も符号はプラスだけで考えます。)

重積分を累次積分する時の積分の順番は入れ替え可能ですが、積分区間は最後に積分するところを除いて一般には関数になります。
例えば上記の場合の重積分の箇所においてx→y→zの順で累次積分をする場合、積分区間に入っているXとXはyとzの関数【定数である事もあり得る】であり、YとYはzの関数、ZとZは何らかの定数という事になります。
累次積分の順番を変えるとどの積分区間が何の変数のどういう関数形になっているかは変わりますが、同じ関数を同じ領域で積分すれば同じ値を得ます。

これで証明の大体の部分は完了しています。

ところで一番最初の積分については、dsをdydzの形で表記する事もできます。(dxdyの形にする時は、積分記号は重積分のように2つ重ねる表記にします。)

$$\int_SF_1ds_x=\int\int_SF_1dydz$$

これらの結果を等号で結ぶと、証明すべき式になります。

$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_SF_1dydz【証明終り】$$

同様に、Fについてはxz平面上の積分を考えて、差の形をyでの偏微分の定積分で表します。Fについてはxy平面上の積分を考えて、差の形をxでの偏微分の定積分で表します。

$$\int\int\int_V\frac{\partial F_2}{\partial y}dxdydz=\int\int_SF_2dzdx$$

$$\int\int\int_V\frac{\partial F_3}{\partial z}dxdydz=\int\int_SF_3dxdy$$

3式を加え合わせると次のようになります。

$$\int\int\int_V\left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dxdydz=\int\int_S(F_1dydz+F_2dzdx+F_3dxdy)$$

$$\Leftrightarrow \int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}【発散定理の形】$$

上記の発散定理における閉曲面の扱いで記したように、閉曲面に凹みがある場合でも領域を切断して分割する事で定理が成立します。

外積ベクトルの定義と公式【3次元】

3次元ベクトルに対しては、「外積」と呼ばれるベクトルを考えます。
外積ベクトルは、物理学で力のモーメントや角運動量、電磁気学での特定の法則などの定式化に使用したりします。また幾何的には「平行六面体」の体積を表す公式に使用もされます。

◆「微分形式」という数学分野の演算でも「外積代数」という用語を使います。その3次元版では確かに「外積ベクトル」との共通性がありますが、一般には区別されており、微分形式の外積代数で使う記号【∧】による演算を「ウェッジ積」と呼び、
3次元ベクトルに対して外積ベクトルを作る時の記号【×】による演算は「クロス積」もしくは「べクトル積」と呼ぶ事もあります。
(英語の場合、3次元ベクトルの外積ベクトルを指す語としては、「べクトル積」に該当する vector product という表現を使う事が多いです。)

高校では数学でも物理でも外積を直接計算する事はほとんどないと思いますが、力と磁場と電流の向きの関係などで間接的に関わっています。そういった関係を、数学的にもう少し詳しく定式化したものが外積ベクトルになります。

定義と考え方

外積ベクトルは、3次元空間内の2つのベクトルから作られる別のもう1つのベクトルの事で、次のような定義のもとで使用します。

外積ベクトルの定義

3次元の空間ベクトル \(\overrightarrow{a}と\overrightarrow{b}\) とから作られる外積ベクトル(あるいは単に「外積」)は、次のように$$\overrightarrow{a}×\overrightarrow{b}$$と書き、向きと大きさを次のように定義します:

  • 大きさ:\(\overrightarrow{a}と\overrightarrow{b}\) が作る平行四辺形の面積に等しいとする
  • 向き:\(\overrightarrow{a}と\overrightarrow{b}\) が作る平面に対して垂直
    【\(\overrightarrow{a}から\overrightarrow{b}\)に向けてより小さい角度で「右ねじ」を締める時のネジ回しの先端の方向】
外積(ベクトル積、クロス積)の定義

通常のスカラー値やスカラー関数の場合、掛け算の記号はA×B、A・B、ABのいずれでも同じ計算を表すと約束しますが、ベクトルの場合には、「\(\overrightarrow{a}\cdot\overrightarrow{b}\)は必ず内積」「\(\overrightarrow{a}×\overrightarrow{b}\)は必ず外積」を表すものと定義します。

外積ベクトルの大きさに関しては、2つのベクトルが作る平行四辺形の面積ですから、ベクトルの成分さえ分かれば一応計算できる事になります。

外積ベクトルの「向き」については、2ベクトルが作る平面(平行四辺形も含めて)に「垂直」という定義ですが、この時に表側の方向への垂直なのか、裏側の方向への垂直なのか2パターン存在します。
そのどちらかに必ず1つに決めるための基準が「右ネジを回す方向」というわけです。(これは少し直感的な説明の仕方ではあるのですが、物理学でもよくなされます。)

ネジを締める時に、時計回りにネジ回しを回せば締まっていくタイプのネジを考えます。
(反時計回りに回すと締まる「逆ネジ」も存在しますが、それは考えない。)
普通は上から見下ろしてネジを回しますが、仮に天井に向けてネジを回して締める時には「下から見れば時計回り」ですが、「上から見ると反時計回り」に見える事に注意します。

右ねじと外積ベクトルの向き①

外積ベクトル\(\overrightarrow{a}×\overrightarrow{b}\)の始めに書かれているほう(ここでは\(\overrightarrow{a}\)のほう)から、「時計回りに回せば『より小さい角度で』もう1つのベクトルに辿り着く」視線の方向を考えます。2つベクトルが作る平面の「表」から見るか、「裏」から見るかという事です。z軸のプラスマイナスを基準として上側(プラス方向)から見るか、下側(マイナス方向)から見るかの違いとも言えます。

z軸を基準にした時に上から見た時に、\(\overrightarrow{a}\)から時計回りに(ネジを締める方向に)回して「より小さい角度」で\(\overrightarrow{b}\)に至る状況だったとしましょう。この時は、外積ベクトル\(\overrightarrow{a}×\overrightarrow{b}\)の向きは、斜めになりながらもz軸の上から下に向かう方向に向いています。(実際、外積ベクトルのz成分の符号はマイナスになります。)

右ねじと外積ベクトルの向き②
画面や紙面に対して「奥→手前」「手前→奥」を表す記号は、
弓矢の「矢」の矢先が眼前に飛んでくるイメージで「丸に点・」の記号で「奥→手前」を表し、
矢の後部についている「羽」が後ろから見えているイメージで「丸にバツ×」の記号で「手前→奥」の向きを表します。

演算と基本公式

外積ベクトルに関しては、幾つかの簡単な公式が成立します。

公式
  • \(\overrightarrow{a}×\overrightarrow{a}=0\) 【一応「ゼロベクトル」。平行四辺形が潰れてしまうので】
  • 2つのベクトルが平行であれば\(\overrightarrow{a}×\overrightarrow{b}=0\) 
  • 2つのベクトルが直角であれば \(|\overrightarrow{a}×\overrightarrow{b}|=|\overrightarrow{a}||\overrightarrow{b}|\) 【平行四辺形が長方形となるためです。】
  • k を実数として、\((k\overrightarrow{a})×\overrightarrow{b}=\overrightarrow{a}×(k\overrightarrow{b})=k(\overrightarrow{a}×\overrightarrow{b})\) 【ベクトルの定数倍に対する扱い】
  • \(\overrightarrow{a}×(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}×\overrightarrow{b}+\overrightarrow{a}×\overrightarrow{c}\) 【分配則】
  • \(\overrightarrow{a}×\overrightarrow{b}=-\overrightarrow{b}×\overrightarrow{a}\) 【交代性。可換でない(交換則が成立しない)事に注意】

これらのうちの交代性と分配則については、もう少し詳しく述べます。

外積ベクトルの交代性

外積ベクトル\(\overrightarrow{a}×\overrightarrow{b}\) に対して、外積を構成するベクトルの配置は全く同じで式の中の順番だけ入れ替えた\(\overrightarrow{b}×\overrightarrow{a}\) という外積を考えると考えるとどうなるでしょうか?

この場合は、下から見て時計回りにネジを締めようとする事で条件を満たすので、向きは\(\overrightarrow{a}×\overrightarrow{b}\)と同一直線にあって「逆向き」になります。

言い換えると、ベクトルの外積は、演算に使う2つのベクトルの順番を変えると符号が逆転します。【内積は2つのベクトルの順序はどちらでもよい事に注意。】

公式:外積ベクトルの交代性

$$\overrightarrow{a}×\overrightarrow{b}=-\overrightarrow{b}×\overrightarrow{a}$$

この時に外積ベクトルの成分も各々符号が反転します。
例えば簡単な例で言うと、\(\overrightarrow{a}×\overrightarrow{b}\)=(1,-2,5)であったとしたら、
\(\overrightarrow{b}×\overrightarrow{a}\)=-\(\overrightarrow{a}×\overrightarrow{b}\)=(-1,2,-5)になるという事です。

外積ベクトルの分配則【証明】

分配則については、一見「当たり前」のようですが、外積ベクトルの定義が多少込み入ったものである事や、可換性については成立していない(代わりに交代性が成立)事から、実はそれほど自明な事ではないとも言えます。

証明は、空間の幾何を考える方法があります。

まず、\(\overrightarrow{b}と\overrightarrow{c}と(\overrightarrow{b}+\overrightarrow{c})\) の3つのベクトルで作られる三角形を考えます。そして、その三角形の各点から\(\overrightarrow{a}\) が伸びているような図を考えます。

次に、\(\overrightarrow{b}の始点から伸びる\overrightarrow{a}\)に対して\(\overrightarrow{b}\) の終点から垂線を引き、その足となる点をHとします。
同様に、\(\overrightarrow{c}の終点から伸びる\overrightarrow{a}\)に対して\(\overrightarrow{b}\) の終点(\(\overrightarrow{c}\) の始点)から垂線を引き、
その足となる点をHとします。
また、\(\overrightarrow{b}\) の終点であり\(\overrightarrow{c}\) の始点でもある点をAと置きます。

外積ベクトルの分配則

この時、AH、AH、Hはそれぞれ平行四辺形の高さになっています。
は\((\overrightarrow{b}+\overrightarrow{c})と\overrightarrow{a}\)が作る平行四辺形の高さです。
(\(\overrightarrow{AH_B}と\overrightarrow{AH_C}がともに\overrightarrow{a}\)に垂直なので辺Hも\(\overrightarrow{a}\)に垂直です。内積を考えると少し分かりやすい。)

そこで、3つの外積ベクトルの「大きさ」をそれらの辺の長さで表す事ができます。
(単純に「平行四辺形の面積=底辺×高さ」で計算します。)

  • \(|\overrightarrow{a}×\overrightarrow{b}|=|\overrightarrow{a}||AH_B|\)
  • \(|\overrightarrow{a}×\overrightarrow{c}|=|\overrightarrow{a}||AH_C|\)
  • \(|\overrightarrow{a}×(\overrightarrow{b}+\overrightarrow{c})|=|\overrightarrow{a}||H_BH_C|\)

ここで、これら3つの外積ベクトルがぴったり「三角形」を作れるかが実は自明ではありません。
しかしこの計算結果から、3つの外積ベクトルの大きさの比は、三角形AHの辺の比に全く等しい事になります。つまりそれらは互いに相似な三角形になっている事を意味し、従って3つの外積ベクトルはきちんと「三角形」を形成する事になります。
さらに、\(\overrightarrow{a}×\overrightarrow{b}\)と\(\overrightarrow{a}×\overrightarrow{c}\)の2つのベクトルに対する斜辺は\(\overrightarrow{a}×\overrightarrow{b}+\overrightarrow{a}×\overrightarrow{c}\)と(常に)表せるので、\(\overrightarrow{a}×(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}×\overrightarrow{b}+\overrightarrow{a}×\overrightarrow{c}\) という事になります。【証明終り】

成分表示の方法(外積ベクトルの成分と射影面積の関係)

外積ベクトルはベクトルですので【内積はスカラー】、通常のベクトルと同様にx、y、z座標の成分を持ちます。そして2つの空間ベクトル\(\overrightarrow{a}と\overrightarrow{b}\) の成分が分かっていれば、外積ベクトル\(\overrightarrow{a}×\overrightarrow{b}\)の成分も一意的に決定します。

まず結論は、次のようになります。

外積ベクトルの成分表示

$$\overrightarrow{a}=(a_1,a_2,a_3),\hspace{10pt}\overrightarrow{b}=(b_1,b_2,b_3)である時$$ $$\overrightarrow{a}×\overrightarrow{b}=(a_2b_3-b_2a_3,\hspace{5pt}a_3b_1-a_1b_3,\hspace{5pt}a_1b_2-b_1a_2)$$ ここで、
第1成分の絶対値は平行四辺形のyz平面への射影面積、
第2成分の絶対値は平行四辺形のxz平面への射影面積、
第3成分の絶対値は平行四辺形のxy平面への射影面積
になります。
(※絶対値が「面積」に必ず等しいという事であり、外積ベクトルの各成分の符号はプラスの場合もマイナスの場合もある事には注意。各成分の符号が外積ベクトルの向きも決定します。)

外積ベクトルの成分と射影面積の関係について、空間上の平行四辺形の各平面への射影もまた「平行四辺形」になっている事は、ベクトルによる平行四辺形の面積公式の形から分かります。
例えば外積ベクトルのz成分 a-aは、xy平面上の平面ベクトルが作る平行四辺形の面積公式の形そのものです。

平行四辺形の射影面積

外積ベクトルの交代制から、外積を構成するベクトルの順序を入れ替えると(ベクトルの配置自体は同じ)、次のような差の順番が入れ替わったような形の成分表示になります。$$\overrightarrow{b}×\overrightarrow{a}=(b_2a_3-a_2b_3,a_1b_3-a_3b_1,a_2b_1-b_2a_1)$$

成分表示についての証明

このように成分表示できる事の証明は、単位ベクトルによるベクトル表記と分配則を使うと意外と簡単に済みます。

$$\overrightarrow{e_1}=(1,0,0),\hspace{5pt}\overrightarrow{e_2}=(0,1,0),\hspace{5pt}\overrightarrow{e_3}=(0,0,1)\hspace{5pt}のもとで$$

$$\overrightarrow{a}=a_1\overrightarrow{e_1}+a_2\overrightarrow{e_2}+a_3\overrightarrow{e_3},\hspace{10pt}\overrightarrow{b}=b_1\overrightarrow{e_1}+b_2\overrightarrow{e_2}+b_3\overrightarrow{e_3}\hspace{10pt}と書けます。$$

このような表された形のもとで外積の公式を使いながら計算して整理すると、外積ベクトルの成分表示が確かに得られます。

使う公式と性質は次の通りです。

  • 「分配則」を使って、通常の展開式のように計算していきます。
    添え字の順番を変えると外積の符号が変わってしまうので注意。
  • 「同じベクトル同士の外積は0」つまり\(\overrightarrow{e_1}×\overrightarrow{e_1}=0\) のようになる事を使うと幾つかの項が0になって消えます。
  • 分配則に従って展開した後で、「交代性」\(\overrightarrow{a}×\overrightarrow{b}=-\overrightarrow{b}×\overrightarrow{a}\)も使用して式を整理します。
  • 異なる単位ベクトル同士は、成す角度が直角であり、作る平行四辺形は正方形であって大きさは1です。さらに単位ベクトル同士の位置関係にも注意して、
    \(\overrightarrow{e_1}×\overrightarrow{e_2}=\overrightarrow{e_3}\)
    \(\overrightarrow{e_2}×\overrightarrow{e_3}=\overrightarrow{e_1}\)
    \(\overrightarrow{e_3}×\overrightarrow{e_1}=\overrightarrow{e_1}\hspace{5pt}\) となる事を最後に使います。
単位ベクトルの外積
通常使われる直交座標の「座標軸の向き」は、外積ベクトルの向きの決まり方を把握するうえでも意外と便利です。3つの単位ベクトルの1つ1つは他の2つの単位ベクトルの外積として表せます。

$$\overrightarrow{a}×\overrightarrow{b}=(a_1\overrightarrow{e_1}+a_2\overrightarrow{e_2}+a_3\overrightarrow{e_3})×\overrightarrow{b}=b_1\overrightarrow{e_1}+b_2\overrightarrow{e_2}+b_3\overrightarrow{e_3}$$

$$=a_1b_2(\overrightarrow{e_1}×\overrightarrow{e_2})+a_1b_3(\overrightarrow{e_1}×\overrightarrow{e_3})+a_2b_1(\overrightarrow{e_2}×\overrightarrow{e_1})+a_2b_3(\overrightarrow{e_2}×\overrightarrow{e_3})+a_3b_1(\overrightarrow{e_3}×\overrightarrow{e_1})+a_3b_2(\overrightarrow{e_3}×\overrightarrow{e_2})$$

$$=(a_2b_3-a_3b_2)(\overrightarrow{e_2}×\overrightarrow{e_3})+(a_3b_1-a_1b_3)(\overrightarrow{e_3}×\overrightarrow{e_1})+(a_1b_2-a_2b_1)(\overrightarrow{e_1}×\overrightarrow{e_2})$$

$$=(a_2b_3-a_3b_2)\overrightarrow{e_1}+(a_3b_1-a_1b_3)\overrightarrow{e_2}+(a_1b_2-a_2b_1)\overrightarrow{e_3}$$

$$=
(a_2b_3-b_2a_3,\hspace{5pt}a_3b_1-a_1b_3,\hspace{5pt}a_1b_2-b_1a_2)【証明終り】$$

外積ベクトルの成分表示は、次のように証明する事もできます。
外積ベクトルの成分を(X,Y,Z)とおいて計算してみます。これらの未知数を算出する計算になります。 まず、次のように置いておきます。$$a_2b_3-a_3b_2=S_1,\hspace{5pt}a_3b_1-a_1b_3=S_2,\hspace{5pt}a_1b_2-a_2b_1=S_3$$ 外積ベクトルの定義から、構成する2つのベクトルとの直交性(内積の値が0)と、3次元の場合の平行四辺形の面積公式の3式を書きます。 $$①\overrightarrow{a}との直交性:a_1X+a_2Y+a_3Z=0$$ $$②\overrightarrow{b}との直交性:b_1X+b_2Y+b_3Z=0$$ $$③面積【2乗を計算】:X^2+Y^2+Z^2=(a_2b_3-b_2a_3)^2+(a_3b_1-a_1b_3)^2+(a_1b_2-a_2b_1)^2$$ $$\Leftrightarrow X^2+Y^2+Z^2=S_1\hspace{1pt}^2+S_2\hspace{1pt}^2+S_3\hspace{1pt}^2$$ ①式に\(b_1\)、②式に\(b_1\) を掛けて2つの式を引き算すると、
\((a_1b_2-a_2b_1)Y=(a_3b_1-a_1b_3)Z \Leftrightarrow S_3Y=S_2Z\) となります。
同じ手順で1つの変数を消去する方法を使うと、
\(S_1Y=S_2X\)および\(S_3X=S_1Z\) となります。
ここで、面積のほうの式③の両辺に\(S_1\hspace{1pt}^2\) を掛けると、次のようになります。 $$S_1\hspace{1pt}^2X^2+S_1\hspace{1pt}^2Y^2+S_1\hspace{1pt}^2Z^2=S_1\hspace{1pt}^2(S_1\hspace{1pt}^2+S_2\hspace{1pt}^2+S_3\hspace{1pt}^2)$$ $$\Leftrightarrow S_1\hspace{1pt}^2X^2+S_2\hspace{1pt}^2X^2+S_3\hspace{1pt}^2X^2=S_1\hspace{1pt}^2(S_1\hspace{1pt}^2+S_2\hspace{1pt}^2+S_3\hspace{1pt}^2)$$ $$\Leftrightarrow (S_1\hspace{1pt}^2+S_2\hspace{1pt}^2+S_3\hspace{1pt}^2)X^2=S_1\hspace{1pt}^2(S_1\hspace{1pt}^2+S_2\hspace{1pt}^2+S_3\hspace{1pt}^2)\Leftrightarrow X^2=S_1\hspace{1pt}^2$$ 同様に計算すると、\(Y^2=S_2\hspace{1pt}^2およびZ^2=S_3\hspace{1pt}^2\)となります。
X、Y、Zの値としてそれぞれプラスとマイナスの2つ候補が出てきますが、既に得られているX、Y、Zの関係式と、外積ベクトルの向きの定義に合う組み合わせから、ここでの計算の場合では「全てプラス符号」です。(具体的な値を代入して試してみると分かりやすいです。)
それにより、\(X=S_1=a_2b_3-b_2a_3,\hspace{5pt}Y=S_2=a_3b_1-a_1b_3,\hspace{5pt}Z=S_3=a_1b_2-a_2b_1\) となります。

ベクトル三重積

外積はベクトルなので、
「あるベクトルと、別の外積ベクトルとの『外積』」というのも計算としてはあり得ます。

つまり、\(\overrightarrow{A}\)×(\(\overrightarrow{B}\)×\(\overrightarrow{C}\)) のような計算も可能であるわけです。
このタイプの計算を「ベクトル三重積」と呼ぶ事があります。次の形の計算が可能です。

(公式)ベクトル三重積の計算

$$\overrightarrow{A}×(\overrightarrow{B}×\overrightarrow{C})=(\overrightarrow{A}\cdot\overrightarrow{C})\overrightarrow{B}-(\overrightarrow{A}\cdot\overrightarrow{B})\overrightarrow{C}$$ また、外積ベクトルを作る順番を変えると計算結果も変わり、次式になります。 $$(\overrightarrow{A}×\overrightarrow{B})×\overrightarrow{C}=-(\overrightarrow{B}\cdot\overrightarrow{C})\overrightarrow{A}+(\overrightarrow{A}\cdot\overrightarrow{C})\overrightarrow{B}$$

この公式中で、内積はスカラーなので、\((\overrightarrow{A}\cdot\overrightarrow{C})\overrightarrow{B}\) などは例えば\(3\overrightarrow{B}\) のようなベクトルの定数倍のようなものを表します。(スカラー関数倍という場合もあり得ます。)

◆ベクトルの「内積」の場合は、ベクトルとベクトルからスカラーを作る演算なので、3つ以上のベクトルに対する内積の演算は存在しないわけです。

ベクトル三重積の公式を証明するには、外積ベクトルの成分表示を使うと比較的簡単です。(少しの計算は必要ですが。)

まず、\(\overrightarrow{A}\)×(\(\overrightarrow{B}\)×\(\overrightarrow{C}\)) のx成分から計算すると次のようになります。

$$x成分:a_2(b_1c_2-c_1b_2)-a_3(b_3c_1-c_3b_1)=b_1(a_2c_2+a_3c_3)-c_1(a_2b_2+a_3b_3)$$

$$=b_1(a_1c_1+a_2c_2+a_3c_3)-c_1(a_1b_1+a_2b_2+a_3b_3)=(\overrightarrow{A}\cdot\overrightarrow{C})b_1-(\overrightarrow{A}\cdot\overrightarrow{B})c_1$$

途中の計算で、a111-a111(=0)を式に加えています。

同様の計算で、y成分とz成分は次のようになります。

$$y成分:(\overrightarrow{A}\cdot\overrightarrow{C})b_2-(\overrightarrow{A}\cdot\overrightarrow{B})c_2\hspace{10pt}z成分:(\overrightarrow{A}\cdot\overrightarrow{C})b_3-(\overrightarrow{A}\cdot\overrightarrow{B})c_3$$

よって、全て合わせると公式の形になるわけです。

ベクトル三重積の括弧の順番を変えたものは、前述の交代性の性質により証明できます。まず、括弧の部分と次の部分を入れ替えてしまいます。すると、既に得られている結果を使えます。

$$(\overrightarrow{A}×\overrightarrow{B})×\overrightarrow{C}=-\overrightarrow{C}×(\overrightarrow{A}×\overrightarrow{B})=-\{(\overrightarrow{C}\cdot\overrightarrow{B})\overrightarrow{A}-(\overrightarrow{C}\cdot\overrightarrow{A})\overrightarrow{B}\}$$

$$=-(\overrightarrow{B}\cdot\overrightarrow{C})\overrightarrow{A}+(\overrightarrow{A}\cdot\overrightarrow{C})\overrightarrow{B}$$

ここで、内積の順序に関しては可換なので、書く文字の順番の入れ替えをしただけです。外積の順序の入れ替えをする時には符号が入れ替わります。

外積ベクトルに対する微分

外積ベクトルを微分すると、通常のスカラー関数の積に対する微分公式と似た形の式が成立します。この微分操作は、物理学などでの「時間微分」として使われる事があります。

(公式)外積ベクトルに対する微分演算

$$\frac{d}{dt}(\overrightarrow{A}×\overrightarrow{B})=\frac{d\overrightarrow{A}}{dt}×\overrightarrow{B}+\overrightarrow{A}×\frac{d\overrightarrow{B}}{dt}$$ 外積ベクトルの部分の順番に注意。逆にすると符号が変わってしまいます。
足し算の部分は逆にしても大丈夫。

この式は自明ではないので(スカラー関数の積の微分公式を知っていたとしても)、証明が必要になります。

この公式も、外積ベクトルの成分表示を使う事で示すことができます。ベクトルの微分は、各々の成分に対する微分として定義されます。ここでは、ベクトルの成分は全てスカラー関数であるとします。計算としては通常の積の微分公式を使用します。

$$x成分の微分:\frac{d}{dt}(a_2b_3-a_3b_2)=\left(\frac{da_2}{dt}b_3+\frac{db_3}{dt}a_2\right)-\left(\frac{da_3}{dt}b_2+\frac{db_2}{dt}a_3\right)$$

$$=\left(\frac{da_2}{dt}b_3-\frac{da_3}{dt}b_2\right)+\left(\frac{db_3}{dt}a_2-\frac{db_2}{dt}a_3\right)=\left(\frac{da_2}{dt}b_3-\frac{da_3}{dt}b_2\right)+\left(a_2\frac{db_3}{dt}-a_3\frac{db_2}{dt}\right)$$

これは確かに公式の外積ベクトルの和の形になっています。最後の変形は、外積ベクトルの成分となる事を明確にするために積の部分の順番を入れ替えただけです。(この式中に出てくるのは全てスカラー量なので、積の順序に関して可換です。)

同様にして、y成分とz成分についても示せます。

$$y成分の微分:\frac{d}{dt}(a_3b_1-a_1b_3)=\left(\frac{da_3}{dt}b_1-\frac{da_1}{dt}b_3\right)+\left(a_3\frac{db_1}{dt}-a_1\frac{db_3}{dt}\right)$$

$$z成分の微分:\frac{d}{dt}(a_1b_2-a_2b_1)=\left(\frac{da_1}{dt}b_2-\frac{da_2}{dt}b_1\right)+\left(a_1\frac{db_2}{dt}-a_2\frac{db_1}{dt}\right)$$

このようにして証明ができるわけです。

法線面積分の定義と性質

ベクトル解析電磁気学の分野で使用する「法線面積分」は、閉曲面に分布するベクトル場に対して定義されるものです。ベクトル場とは、すなわちベクトルの3成分のいずれもがx、y、zのスカラー関数になっているベクトルです。

閉曲面と閉曲線
閉曲面とは、例えば球や楕円体などの、「閉じた」曲面です。(ドーナツ型・うきわ型の「トーラス」なども含みます。)また、閉曲線とは、円や楕円のように、ぐるっと一周つながった曲線を言います。

★書籍の紙面ではベクトルを表す表記として文字をボールド体にする方法が多く使われますが、このページではベクトルは一貫して文字の上に矢印を添える表記方法を採用します。
スカラー関数に対する「面積分」は似ていますが別物なので注意。具体的な計算方法も異なります。

ベクトルの内積の考え方を使用します。

法線面積分を表す式には幾つかの表記方法がありますが、次のようになります。いずれも等号で結ぶ事ができ、計算すれば同じ値になります。

「法線面積分」の定義

$$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int_S (F_1 ds_1 + F_2 ds_2 + F_3 ds_3)=\int_SF_1 ds_1+\int_SF_2 ds_2+\int_SF_3 ds_3$$ $$\overrightarrow{F}=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z))$$ $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}を、\int_S \overrightarrow{F}\cdot \overrightarrow{n}dsとも書きます。$$ 積分記号に添えてあるSは、surface(表面)からの記号として一般的に使われる記号です。
特定の閉曲面の表面全体(表側あるいは裏側のいずれかの全体)を表します。

また、二重積分で表して計算する事も可能です。その場合、各項の具体的な計算をする時には2方向の積分区間をきちんと指定します。 $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int\int_S (F_1 dydz + F_2 dzdx + F_3 dxdy)$$ $$=\int_{Y1}^{Y2}\int_{Z1}^{Z2}F_1 dydz+\int_{Z1}^{Z2}\int_{X1}^{X2}F_2 dzdx+\int_{X1}^{X2}\int_{Y1}^{Y2}F_3 dxdy$$

\(\overrightarrow{n}\) は、曲面の各点に対する単位法線ベクトルを表し、長さは1で曲面に対し垂直な向きのものです。また、\(d\overrightarrow{s}=ds\overrightarrow{n}\) になります。詳しくは次のようになります。

法線ベクトル

$$ d\overrightarrow{s}=( ds_1 , ds_2 , ds_3 ) $$ $$|\overrightarrow{n}|=1,\hspace{10pt}|d\overrightarrow{s}|=ds=\sqrt{ds_1^2 + ds_2^2 + ds_3^2},\hspace{10pt}d\overrightarrow{s}=ds\overrightarrow{n}$$ \(d\overrightarrow{s}\) および単位法線ベクトル\(d\overrightarrow{n}\) は、閉曲面上の各点から曲面の「裏側→表側」に向かう向きに伸びると約束します。
各成分は、微小面積の平面への「射影」になっています。

  • \(|ds_1| \)=「yz平面」への射影領域の面積
  • \(|ds_2| \)=「xz平面」への射影領域の面積
  • \(|ds_3| \) =「xy平面」への射影領域の面積
証明:微小面積として三角形を考えた場合、\(d\overrightarrow{s}\) は2辺を成すベクトルで作られる外積ベクトルの半分として表されます。
外積ベクトルの成分の大きさ(絶対値)はyz平面、xz平面、xy平面への三角形の射影の面積に等しくなりますから、\(d\overrightarrow{s}=( ds_1 , ds_2 , ds_3 )\) の各成分の大きさも、垂直な3つ平面への微小面積の射影面積に等しくなる事が示されます。

法線ベクトルの成分ds、ds、dsには通常のベクトルと同じく符号があります。
式としては、法線ベクトルと射影平面に垂直な軸がなす角の余弦の符号と同じプラスマイナスの符号を持つと定義します。例えば、dsであれば対応する射影平面がyz平面で、それに垂直な軸はx軸ですから、法線ベクトルとx軸がなす角を見ます。それが鋭角であればdsの符号は+で、鈍角であれば-の符号になります。その符号は、座標上の図に描いてみた時の向きから判定したものともちろん一致します。

図で状況を見ながら式の意味を考えると分かりやすいでしょう。
つまり、球面などの閉曲面の各点にベクトル場がぎっしり詰まっている感じです。それを曲面全体に渡って積分します。その際に、ベクトル場の「曲面の法線ベクトルの向きの成分だけ」を内積によって取り出したものを考えているわけです。

曲面に垂直な法線ベクトル(大きさは微小面積)を考え、ベクトル場との内積を考えます。法線ベクトルのうち、長さを1としたものを「単位法線ベクトル」と言います。

微小面積を大きさに持つ法線ベクトル\(d\overrightarrow{s}=ds\overrightarrow{n}\)と微小面積の射影面積との関係も、図に描いて外積ベクトルとして捉えると見通しがよいです。

法線ベクトルと外積の関係
平行四辺形で考えても本質は同じです。外積を使うと少見通しはよくなります。内積がスカラーであるのに対し、外積はベクトルである事に注意。微小な三角形の面積を外積ベクトルの大きさで表すと、そのベクトルの各成分は微小三角形のyz、xz、xy平面への射影面積になります。

法線ベクトル\(d\overrightarrow{s}\)の成分の符号については、個々の法線ベクトルについて例えば(-1,2,1)といった成分表示となる事からプラスマイナスの符号を持ちます。各成分の「大きさ」については、微小面積のyz平面、xz平面、xy平面への射影面積に等しくなるという事です。

法線ベクトルの成分の符号
法線ベクトルの向きは「閉曲面の裏から表に向かう方向」にとります。その成分は法線ベクトルの具体的な向きによって+か―の符号があります。式で書く場合は、法線ベクトルと軸とのなす角の余弦によって符号を判定します。

積分内の内積の部分については、余弦を使ったほうの内積の定義として書く場合もあります。

$$\overrightarrow{F}\cdot d\overrightarrow{s}=|\overrightarrow{F}||\overrightarrow{s}|\cos \theta$$

ただし、電磁気学などで法線面積分を考える場合では、特別な形のモデルで最初から考える場合も多いのです。例えば、ベクトル場が曲面に全て垂直であれば公式を使わなくても角度は0とすぐに判断できて、余弦は1になります。

慣性の法則

慣性の法則とは、古典力学で考えられている運動の3法則の1つです。
一般的には第1番目の前提条件となる法則として挙げられています。

運動の3法則の第1法則

慣性の法則とは?

物体に力が働いていない場合、次のいずれかになる:

  1. 物体は静止し続ける
  2. 等速『直線』運動をする

この事が成立する座標系が存在する事を「慣性の法則」と呼びます。

慣性とは例えば氷の上を滑るような時は、何か「力」が働いて動いているというよりは惰性で動いていると捉えようという意味です。そして、何かの「力」が働いている事とそうでない事の区別は定量的に「『速度の変化』があるかないか」で考えようというのが力学の理論で、その事は特に運動方程式で表現されています。「速度の変化がない」場合とは物体が止まっている場合も含みますし、滑る場合のように惰性で動いてる場合も両方含んでいます。

慣性の法則は3法則の2番目の運動方程式が成立する「前提条件」となります。
力学では、慣性の法則が成立していなければ運動方程式も成立しないという考え方をします。

運動方程式とは正確にはベクトルを使用した式ですが、
1直線上の運動(1次元の運動)を考える時は次の1式で表されます。$$F=m\frac{d^2x(t)}{dt^2}$$

その前提のもとで、運動方程式からも慣性の法則についての記述を得る事もできます。

※「慣性の法則」自体が運動方程式から証明されるわけではなく、運動方程式によっても慣性の法則の内容が「矛盾なく表現できる」という事であり、理論としての一貫性を持つという事です。

物体が静止または等速運動する事の表現

運動方程式で力がゼロという場合を考えてみましょう。

そうであれば、「加速度もゼロ」という事になります。この時 m は1kgや2kgといった物体の質量で、これは特別な条件を課さない限りは一定値です。

それを踏まえて、微分方程式を所定の計算で解きます。

$$0=m\frac{d^2x(t)}{dt^2}\Leftrightarrow \frac{d^2x(t)}{dt^2}=0\Leftrightarrow \frac{d}{dt}\left(\frac{dx}{dt}\right)=0から、$$

$$\frac{dx}{dt}=C【定数】$$

これは1階微分=0という形の微分方程式で、考え方自体はじつに単純です。一直線上でも物体の速さは、確かに「力が働いていない」時には一定であるという結果になっています。必ずしも速さがゼロ(静止している場合)だけでなく、等速で動いている場合もあり得るという事が数学的な微分方程式の解ともきちんと対応しているので理論としての一貫性を持つという事です。

上記のように定量的な立場で考えてみる時は、氷の上かそうでないかというよりは「速度の変化があるかないか」が重要な要素という事になります。普通の地面や床の上では物を押してもすぐ止まってしまいますが、これも速度の変化と捉えて「摩擦力」を定量的な意味で導入し考察します。
これは物体が接する表面の状態に大きさが依存する力で、氷の場合には摩擦力がごく少ない値でしか発生しないと考えます。

「力が働いていない」という時には、本当に何も力が存在してないと場合と、逆方向に働く力がつり合っている(正確には力ベクトルの補合計がゼロベクトルになる)場合の両方を含みます。もっとも、物理学では何か物体の質量が存在すれば微小であっても力が働くと考えますから、物体の速度が変化しないという場合は厳密にはほとんどの場合後者という事になります。しかしどちらの場合でも、運動方程式上では力が働いていないという事は共通してゼロベクトルで表せます。

直線運動をする事の表現

さて「1階微分=0」という微分方程式として運動方程式を考えた場合、確かに「等速」になるという事の表現はできたわけですが、「軌道の形」についてはまだ何も表していません。
「直線運動」であるかという事については「2階微分=0」のタイプの微分方程式を解く必要があります。

式自体は先ほどと同じです。しかし先ほどは、速さを表すdx/dt=Cという形のままで計算を止めていました。これをさらにx=x(t)で表す事で時間ごとの位置を知る事ができ、物体の「軌跡」を計算できます。

$$0=m\frac{d^2x(t)}{dt^2}\Leftrightarrow \frac{dx}{dt}=Cから、$$

$$x=Ct+B$$

ここでCとBというのは何らかの定数です。この具体的な値を知るには、ある時刻での物体の具体的な位置と速度を知る必要があります(多くの場合t=0の時を考えるのでそれらを「初期値条件」とも言います。)
尚、定数関数も何回微分してもゼロになるので解ですが、これは1次関数で C = 0 の場合と見なせるので、定数 C の値に制限を設けなければ定数関数の場合も1次関数に含める事ができます。

1次関数が得られたのでいかにも「直線」っぽいですが、この段階ではそもそも一次元の「直線上」の運動しか考えていないので、これではまだ示した事にはなりません。

そこでどうするかというと、少なくとも平面上の運動として考えて、微分方程式をx軸方向とy軸方向の2方向について立てる必要があります。空間内の運動なら3方向です。このとき、xやyという直交座標成分は x(t) と y(t)という時間についての関数になります。

$$F_{\Large{x}}=m\frac{d^2x(t)}{dt^2}\hspace{10pt}F_{\Large{y}}=m\frac{d^2y(t)}{dt^2}\hspace{10pt}F_{\Large{z}}=m\frac{d^2z(t)}{dt^2}$$

空間での運動を考える時は、正確には運動方程式を3つ作って分析を行うという事です。力が働いていない時は、「2階微分=ゼロ」という式が、3つできます。変数はそれぞれ時間 t であり、x,y, z がそれぞれ関数 x(t), y(t), z(t) である事に注意。

3つも微分方程式があるといかにも面倒そうですが(実際、一般論としては厄介です)、
ここでは「力が働いていない」場合を考えるだけなので3式とも力の部分に0を入れるだけです。
つまり次のように、3つの「2階微分=0」という式を考えるだけで済みます。
しかもこれら3式は全く同じ形で文字を変えてるだけなのでまとめて解く事ができるわけです。

$$0=m\frac{d^2x(t)}{dt^2}\hspace{10pt}0=m\frac{d^2y(t)}{dt^2}\hspace{10pt}0=m\frac{d^2z(t)}{dt^2}$$

$$ \Leftrightarrow \hspace{10pt} 0=\frac{d^2x(t)}{dt^2}\hspace{10pt}0=\frac{d^2y(t)}{dt^2}\hspace{10pt}0=\frac{d^2z(t)}{dt^2}$$

これらを(まとめて)解く事で、次の3つの通常の連立方程式を得ます。

$$x(t) = b_1t+c_1,\hspace{10pt} y(t) = b_2t+c_2 ,\hspace{10pt} z(t) = b_3t+c_3 $$

3式ともtに関する1次式ですから、通常の連立1次方程式と同じく
「tを消去するか、あるいは代入する」方法で、座標成分同士の関係式を作れます。

例えば x と y の関係式は、b1≠0の条件のもとで次のようになります。$$b_2x-b_1y=c_1b_2-c_2b_1\Leftrightarrow y=\frac{b_2}{b_1}x+\frac{c_2b_1-c_1b_2}{b_1}$$
もっとも、あまり具体的な関係式を出す事よりも、ここでは y = Ax + B のような
「1次関数(グラフで言うと直線)」の関係になっているかを見ればじゅうぶんです。
ここではまず、xy平面で物体の軌道は確かに「直線」になる事が示された事になります。

すると全く同じ要領で考えて、
x と z 、y と z の関係も同様にお互いに1次関数の関係にある事が分かります。
また、z = Ax + By + C の形の「3次元での直線」を表す関係式も成立する事も分かります。
(※例えば x + y を考えたうえで t を x, y で表し z の式の t に代入。)

いずれにしても、x, y, z 同士の関係を直交座標(=現実の空間のモデル)上のグラフに描けば直線という事になり、「軌道は直線である」事を意味します。
逆に、もし物体の運動の軌道が曲がっているとすれば、軌道を直線からそらすような何らかの力が働いているという事も意味するという理屈になります。

※物体が「静止」している場合、もちろん軌道は直線にはなりませんが、これは微分方程式の解から考察すると、例えば x 座標成分について x = bt + c で b = 0 の場合、x = c となり、任意の時刻でその位置という事ですから、少なくとも x 軸方向には一切動いていない事を示しています。
y と z についても同様に時間に対して定数であるとすると、結局物体の位置座標は任意の時刻で必ず1点にある=「静止している」という事になります。そのような場合を除くと、物体の位置座標同士の間で必ず1次式の関係を作る事ができ、直線軌道ができるという事です。
つまり、物体に力が働いていなければ物体は静止したままか、「等速」で「直線」運動するという事が運動方程式からも確かに式で表せるという事になります。

まとめ:解法の手順 運動方程式を作るまで

運動方程式を「2階」の微分方程式として扱える事から始まり、結論を得る流れを見ましょう。

  1. 「速度の(1階の)時間微分=加速度」$$\frac{d}{dt}v(t)=a(t)【加速度】$$
  2. 「位置の(1階の)時間微分=速度」(※位置とはx 座標、y 座標等の事)$$\frac{d}{dt}x(t)=v(t)【速度】$$
  3. これら2つを合わせると: 「位置の時間による2階微分=加速度」$$\frac{d^2}{dt^2}x(t)=a(t)$$
  4. 一次元運動の場合、(1直線上の)座標を x(t) とすると
    「物体に働く力は、物体の質量と加速度に比例する」という運動方程式は、
    $$F=ma(t)\hspace{5pt}\Leftrightarrow \hspace{5pt}F=m\frac{d^2x(t)}{dt^2} と書ける$$
  5. 平面運動の場合は x(t)、y(t) ごとに、
    空間運動の場合、同じく直交座標成分 x(t)、y(t)、z(t) ごとに運動方程式を立てます。
    座標成分ごとに3つ作ります。$$F_{\Large{x}}=m\frac{d^2x(t)}{dt^2}\hspace{10pt}F_{\Large{y}}=m\frac{d^2y(t)}{dt^2}\hspace{10pt}F_{\Large{z}}=m\frac{d^2z(t)}{dt^2}$$
  6. 力が働いていない場合は、力の各成分に0を代入する:
    $$0=m\frac{d^2x(t)}{dt^2}\hspace{10pt}0=m\frac{d^2y(t)}{dt^2}\hspace{10pt}0=m\frac{d^2z(t)}{dt^2}$$ 質量mは、両辺で割る事により消去できます。(解に影響を与えないという事です。)
手順の後半 微分方程式の解を出した後の処理
  1. という事は、「『2階微分=0』という式が3つできる」
    → 時間変数の1次関数が解になる式が3つできる
    式で書くなら:\(x(t) = b_1t+c_1,\hspace{10pt} y(t) = b_2t+c_2 ,\hspace{10pt} z(t) = b_3t+c_3\)
    t を変数とする1次関数が3つできます
  2. 連立方程式を解く要領で「t を消去」して「x と y」「x と z」「z と x と y」などの関係式を作る。
    →すると、x, y, z のそれぞれ同士の関係も「1次関数」になる。
    y = Ax + B, z = Ax + By + C のような形になります。これらは「直線」の関係です。
    (簡単な計算作業で示せます。)
  3. すると結局次の事が癒えます。

    → 「力が働いていない(ゼロ)」という条件のもとで運動方程式を解き、
     物体の位置座標(x, y, z)を空間に描くと、その軌道は「直線になる」
    →「静止してない物体に力が働かない時、物体は等速の『直線』運動をする」
    という慣性の法則の内容がこの段階で、確かに表現される。

    • 「等速である」事については、加速度を「速度の1階微分」と考えて「1階微分=0」の微分方程式の解から出せます。それを各成分について考えても同じ事で、空間の中の軌道を等速で運動している事になります。
    • 等速の「直線運動」とは逆に、軌道が少しでも「曲がっていたら」、それは何らかの力が働いている事も意味します。
      力は、多くの場合は物体の速さを変えますが、中には「速さはそのままで『軌道を、直線形からそらす』」というものもあるのです(等速円運動の中心力など)。

このように運動方程式からも「慣性の法則」の内容がきちんと表現できるわけです。

「1階微分=0」「2階微分=0」という微分方程式は数学的にはとても簡単な微分方程式に属するのは間違いありませんが、物理で使う場合に物理的な意味を考えると、考察する事が意外と多くあります。(逆のパターンもあります。物理的に重要ではないけれど、数学的に考察する余地が多くある場合です。)

仕事と運動エネルギーとの関係

このページでは古典力学での「仕事」と、運動エネルギーとの関係について述べます。
数学的には、ベクトルの微積分の応用であり、ベクトルの内積の応用でもあります。

内積と「仕事」

平面や空間での物体の運動を考える時、力のベクトルの向きと、現に運動している物体の運動の方向・・・つまり速度ベクトルの方向は、互いに異なるという事も普通にあります。

例えば、床に置かれた重い物に紐を付けて斜めに引っ張ったところ床に対して引きずるように水平に動いたとすれば、力ベクトルは斜め上方向、速度ベクトルは水平方向という事になります。

このような時に力ベクトルと速度ベクトルとの「内積」を考えます。
そしてそこから、「仕事」という量を定義します。

\(\overrightarrow{F}\cdot \overrightarrow{dx}(または \overrightarrow{F}\cdot \overrightarrow{\Delta x})\) を、物理学では「仕事」と呼びます。
これを経路に沿って合計した量(積分値)を「仕事量」と呼ぶ事があります。

◆仕事はベクトルの内積ですので、
\(\overrightarrow{F}\cdot \overrightarrow{dx}=|\overrightarrow{F}|\hspace{2pt} |\overrightarrow{dx}|\cos\theta\) のようにも書く事ができます。
マイナスの値になる事もあり、その場合にも物理的な意味を持ち、角度とその余弦も力と物体の運動に対応したものになります。

この「仕事」を考える事により、じつは「『力』と『物体の運動』と『エネルギー』」を数式的に関連付ける事ができるのです。

運動方程式が成立しているとすれば、その事は数学的に導出できます。結論の関係式は次のようになります。

仕事とエネルギーの関係

関係式は次のようなものです。 $$\int_{t_1}^{t_2}\overrightarrow{F}\cdot \frac{d\overrightarrow{x}}{dt}dt=\frac{1}{2}m{v_2}^2-\frac{1}{2}m{v_1}^2$$ 左辺の積分は仕事量、右辺は時間の区間の始まりと終わりでの運動エネルギーの差です。
左辺と右辺とで物理学的な単位は等しく、ともに[J](ジュール)です。

意味としては、なされた「仕事」の量と運動エネルギーの増減の量は等しいという事です。

この関係式の数学的な導出には、微分の基本公式とベクトルの微積分が直接的に関係しています。

仕事と運動エネルギー
運動エネルギーの増減は仕事の合計(積分値であり、「仕事量」と言います)で計算されます。そして仕事とは、内積によって表せる量です。物体の移動方向に対して働いている力ベクトルの向きがななめ方向である場合には、物体が移動する向きに対する力ベクトルの成分だけが運動エネルギーの増減に寄与するという事を言っています。

仕事と運動エネルギーの関係式の導出

まず運動方程式をベクトルの形で書いて、両辺に対して速度ベクトルとの内積を考えます。

$$【運動方程式】 \overrightarrow {F}=m\frac{d^2\overrightarrow{x}}{dt^2} $$ $$【速度ベクトルとの内積】 \overrightarrow {F}\cdot \frac{d\overrightarrow{x}}{dt}=m\frac{d^2\overrightarrow{x}}{dt^2}\cdot \frac{d\overrightarrow{x}}{dt}$$

運動方程式の加速度を含む側について、加速度は位置座標を表すベクトルの時間による2階微分である事に注意します。この部分と、速度ベクトルの内積を考えると、「2階微分と1階微分の積」という、一見わけの分からないものが出てきます。これは一体何でしょう?

それについての数式的な解釈は次のように行います。
合成関数に対する微分公式を用いると、「関数の2乗」を微分すると1階微分が積の形でくっついてくる事が分かります。
すると、「1階微分の2乗」を(1回)微分すると、 「2階微分と1階微分の積」 が出てくるのです。この時、2という係数も出てきますから1/2を乗じて係数調整を行います。

計算を進めると、じつは次のように変形できます。

$$ \overrightarrow {F}\cdot \frac{d\overrightarrow{x}}{dt}=\frac{d}{dt}\frac{m}{2}\left|\frac{d\overrightarrow{x}}{dt} \right|^2$$

計算

具体的な数式を見てみましょう。
まず、ベクトルではなくてtを変数とする1変数関数x=x(t) について考えてみます。 $$\frac{dx}{dt}\frac{d^2x}{dt^2} などは、異なる導関数同士の「積」です。$$ $$\frac{d}{dt}\left\{\frac{m}{2}\left(\frac{dx}{dt}\right)^2\right\}=2\cdot\frac{m}{2}\frac{dx}{dt}\frac{d^2x}{dt^2}=m\frac{dx}{dt}\frac{d^2x}{dt^2}$$ 2乗の部分の微分については、合成関数の微分公式を使っています。
質量mは定数扱いです。
これがベクトルの各成分\(x_1, x_2, x_3\) (それぞれ時間tの関数)について言えます。
そこで、次のように内積を考えるのです。 $$m\frac{d^2\overrightarrow{x}}{dt^2}\cdot \frac{d\overrightarrow{x}}{dt}=m\frac{dx}{dt}\frac{d^2x_1}{dt^2}+m\frac{dx}{dt}\frac{d^2x_2}{dt^2}+m\frac{dx}{dt}\frac{d^2x_3}{dt^2}$$ $$=\frac{d}{dt}\frac{m}{2}\left(\frac{dx_1}{dt}\right)^2+\frac{d}{dt}\frac{m}{2}\left(\frac{dx_2}{dt}\right)^2+\frac{d}{dt}\frac{m}{2}\left(\frac{dx_3}{dt}\right)^2$$ $$=\frac{d}{dt}\frac{m}{2}\left\{ \left(\frac{dx_1}{dt}\right)^2+\left(\frac{dx_2}{dt}\right)^2+\left(\frac{dx_3}{dt}\right)^2 \right\} $$ $$=\frac{d}{dt}\frac{m}{2}\left|\frac{d\overrightarrow{x}}{dt} \right|^2$$ 最後のところは、$$\frac{d\overrightarrow{x}}{dt}=\left(\frac{dx_1}{dt},\frac{dx_2}{dt},\frac{dx_3}{dt} \right) というベクトルの「大きさの2乗」$$を考えているのです。物理的な意味としては、これは物体の速度ベクトルの大きさの2乗、つまり「速さ」の2乗を意味します。内積の計算によって各成分を含む項の和が出てきて、うまい具合に「速さ」になっている事に注意してみてください。

「速度ベクトルのx成分の2乗」を時間tで微分すると、
「速度ベクトルのx成分の2乗」の2倍と、「加速度ベクトルのx成分」との積になります。
数学の合成関数の微分公式を使用しています。

変形して得られた式の両辺をてきとうな時間 \(t_1,t_2\) で定積分したものを考える事で、仕事量と運動エネルギーの関係式が得られます。

$$\int_{t_1}^{t_2}\overrightarrow {F}\cdot \frac{d\overrightarrow{x}}{dt}dt= \int_{t_1}^{t_2}\frac{d}{dt}\frac{m}{2}\left|\frac{d\overrightarrow{x}}{dt} \right|^2dt= \frac{1}{2}m{v_2}^2-\frac{1}{2}m{v_1}^2$$

運動エネルギー」は次式で定義します。記号は、Tを使う事が多いです。

$$T=\frac{1}{2}mv^2\left(=\frac{m}{2}\left|\frac{d\overrightarrow{x}}{dt} \right|^2\right)$$

この量は正の仕事がなされれば増加し、負の仕事がなされれば減少します。また、仕事がなされなければ運動エネルギーは変化しない、という事も意味します。
(※数学的な定義においても内積は正の値だけでなくゼロや負の値も取り得るものであり、図形的な意味も持つわけです。)

この運動エネルギーに加えて、さらに「位置エネルギー」というものを考え、両者の和を「力学的エネルギー」と呼びます。重力等の「保存力」のみが働いている場合、力学的エネルギーの保存則が成立します。

また、実験・観測から定量的(※)な意味でのエネルギーの等価性が確認されています。運動エネルギーは量としては熱エネルギーや電気エネルギーに変換されると見なす事ができて、物理学だけでなく種々の工学等での理論計算に用いられています。

(※)「定量的に」と言うのは、例えば「力学的エネルギーの『入力』が電気エネルギーと熱エネルギーの『出力』に等しい」といった計算ができるという意味になります。発生する熱エネルギーに関しては、望んでいるものでなければ「損失」と呼ぶ事も多いです。

熱なども含めて考えると、一般的にエネルギー全体についての保存則が成立します。
例えば摩擦によって物体が停止すれば当然ですが運動エネルギーはゼロになりますが、この時にエネルギーの量自体はどこかに消えたというよりは、同じ量の熱エネルギーに変換されたと考えて考察が行われます。

■関連コンテンツ(サイト内リンク)

偏微分の応用の例:位置エネルギーと保存力の関係

合成関数に関する偏微分の公式の物理での使用例を、ここでは1つ述べます。

★ このページではベクトル解析で使用する「勾配」という考え方を使用します。
これは、多変数関数(多変数のスカラー関数)に対する偏微分によって表されるものです。

保存力の力ベクトルは、位置エネルギーの勾配ベクトルで表せる

先に結論の式を書きますと、力が「保存力」である場合に、位置エネルギーのxでの偏微分をx成分、yでの偏微分をy成分、zでの偏微分をz成分に持つベクトルは、保存力の力ベクトルに等しいという関係式があります。【※保存力で無い場合は成立しませんので注意。】

保存力の力ベクトルは、位置エネルギーの勾配ベクトルで表せる

まず、「位置エネルギー」(あるいはポテンシャルエネルギー)U(x,y,z) を次のように定義します。これはベクトルでは無く、スカラー関数です。 $$\large U(x,y,z)=-\int_{\overrightarrow{R_O}}^{\overrightarrow{R}}\overrightarrow{F}(x,y,z)\cdot d\overrightarrow{r}$$ $$\large \mathrm{grad} U(x,y,z)=\left(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y},\frac{\partial U}{\partial z}\right)$$ 力ベクトル F(x,y,z) が保存力である場合、次式が成立します:$$\large -\mathrm{grad} U(x,y,z)=\overrightarrow{F}(x,y,z) $$

★ プラスマイナスの符号の関係が、ちょっとごちゃごちゃするので注意。

「勾配」grad (または∇「ナブラ」)については、詳しくはベクトル解析という分野で説明されます。

この関係式は、古典力学の理論としては仕事とエネルギーの関係の話の延長線上にあります。

これは要するに数学的には、
「接線線積分の形の多変数関数の勾配ベクトルは、もとのベクトル関数と同じ形になる」
という事を言っています。通常の不定積分(あるいは積分区間に変数が入った定積分)は、通常の微分を考える事で元の関数に戻るという「微積分学の基本定理」がありました。それと似た形の式という事になります。

この関係式の証明のポイントは、合成関数の偏微分公式です。
ベクトルの内積の計算も直接的に関わります。

\(-\mathrm{gradU(x,y,z)}= \overrightarrow{F}(x,y,z)\) の証明

まず通常の微積分学の基本定理を用いたうえで、ベクトルの内積と合成関数の 偏微分の公式をうまくかみ合わせます。

位置座標は全て「物体の位置」であるとして、位置座標に対応する時間成分tを考えます。
力ベクトルの成分についても同様に tの関数であると考えます。

$$\large \overrightarrow{F}(t)=(F_X(t),F_Y(t),F_Z(t))$$

$$\large 点\overrightarrow{R} での時刻をt、点\overrightarrow{R_O} での時刻を t_O とします。$$

最初のステップ $$\large -U(x,y,z)=\int_{ \overrightarrow{R_O}}^{\overrightarrow{R}} \overrightarrow {F} (x,y,z) \cdot d\overrightarrow{r}=\int_{t_O}^{t} \overrightarrow {F} (\tau) \cdot \frac{d \overrightarrow{r} }{d\tau}d\tau$$ $$\large =\int_{t_O}^{t}F_X(\tau) \frac{dx}{d\tau} d \tau + \int_{t_O}^{t}F_Y(\tau) \frac{dy}{d \tau } d \tau + \int_{t_O}^{t} F_Z(\tau) \frac{dz}{d \tau } d \tau $$ $$★ 時間についての積分変数の表記はt → \tau (タウ)に変えています。$$

Uの定義(力学での定義です)にマイナス符号があるので、
ここでは最初から「-U」を考えて、積分での表記をプラス符号で考えています。

★ 後述しますが、力が「保存力」であるという条件がないと、じつはまずこの式変形ができません。なぜかというと一般の接線線積分は、2つの端点だけでなく、その2点を結ぶ経路によって値が変わってしまうからです。力が保存力であるという条件は、この値が経路によらず一定の値であるとしてよいという条件です。

★ 古典力学の理論の中では、もともとは一般の力に対して時間で表したほうの式が先にあって、次に「保存力」という位置座標のみで決定するものを考えます。

★ 積分区間にベクトルが入っている部分は、次の意味になります。 $$\large \int_{ \overrightarrow{R_O} }^{\overrightarrow{R}} \overrightarrow {F} (x,y,z) \cdot{d\overrightarrow{r}} $$ $$\large =\int_{x_O}^{x}F_X(x,y,z)dx+ \int_{y_O}^{y}F_Y(x,y,z)dy+ \int_{z_O}^{z}F_Z(x,y,z)dz $$ $$\large \overrightarrow {F}=(F_X,F_Y,F_Z),\hspace{10pt}\overrightarrow{R_O}=(x_O,y_O,z_O),\hspace{10pt}\overrightarrow{R}=(x,y,z)$$ dx の部分は x に関してだけ積分し、yやzは定数同様に扱います。つまり、偏微分と同じような考え方をするわけです。この場合の微積分学の基本定理は、積分と「偏微分」との関係になります。

次に、時間成分tで U(x,y,z) = U(x(t), y(t), z(t)) を微分します。
内積計算で3つの項の和にした部分は共通の積分変数tでの積分になっているので、通常の微積分学の基本定理がそのまま使えます。

この時、積分する対象として $$\large F_X(t) \frac{dx}{dt}$$ を1つの関数と捉える事がポイントです。
積分中の表記では$$\large {F_X( \tau ) \frac{dx}{d\tau}}$$ にしています。

成立する式:その①

$$\large\frac{dU}{dt}= \frac{d}{dt}\left(\int_{t_O}^{t}F_X( \tau ) \frac{dx}{d\tau} d \tau + \int_{t_O}^{t}F_Y( \tau ) \frac{dy}{d \tau } d \tau + \int_{t_O}^{t} F_Z( \tau ) \frac{dz}{d \tau } d \tau \right)$$

$$\large = F_X(t) \frac{dx}{dt} + F_Y(t) \frac{dy}{dt} + F_Z(t) \frac{dz}{dt}=\overrightarrow{F}(x,y,z)\cdot \frac{ d\overrightarrow {R}}{dt} $$

他方で、合成関数の偏微分公式を使うと U の時間微分の計算を別途に表現できるのです。
この場合、多変数 x、y、z が1つだけの変数tの合成関数になっているという事なので、表記としては$$\large \frac{\partial U}{\partial t}=\frac{dU}{dt}です。$$

ただし、もとの関数が U(x,y,z) という多変数関数なので、偏微分のほうの合成関数の微分公式を使う点に注意しましょう。

成立する式:その②

$$\large \frac{\partial U}{\partial t}=\frac{dU}{dt}= \frac{\partial U}{\partial x} \frac{\partial x}{\partial t}+ \frac{\partial U}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial U}{\partial z} \frac{\partial z}{\partial t} $$ $$\large = \frac{\partial U}{\partial x} \frac{dx}{dt}+ \frac{\partial U}{\partial y} \frac{dy}{dt} + \frac{\partial U}{\partial z} \frac{dz}{dt} =(\mathrm{gradU})\cdot \left( \frac{ d\overrightarrow {R}}{dt}\right) $$

最後の結果は「Uの勾配ベクトル」と「速度ベクトル」との内積です。
内積はスカラーであり、勾配はスカラー関数をベクトルの関数変換する演算である事を意識すると分かりやすいと思います。

同じものを2通りの数式で表せる事になるので、等号で結ぶ事ができます。
これによって、次の関係式が成立する事になります。

$$\large – \overrightarrow{F}(x,y,z)\cdot \frac{ d\overrightarrow {R}}{dt} = \mathrm{gradU}\cdot \frac{ d\overrightarrow {R}}{dt} $$

$$これは、\overrightarrow{A}\cdot \overrightarrow {C} = \overrightarrow{B}\cdot \overrightarrow {C} という関係になっています。 $$

これが証明の根拠になるわけですが、数学的には
\(\overrightarrow{A}\cdot \overrightarrow {C} = \overrightarrow{B}\cdot \overrightarrow {C} \) から直ちに\(\overrightarrow{A}= \overrightarrow{B}\) とは言えない事には注意しましょう。
そうならない場合もあるのです。
しかし、この場合は \(\overrightarrow {R}\) が特定の座標点では無くて「任意の座標点」です
特定の点だけではなく、どんな座標の点を考えたとしてもこの関係式は成り立つ、という意味です。
ですから、\(\overrightarrow {R}\) に対して内積をとると等しい値になる2つのベクトル\(– \overrightarrow{F}(x,y,z)と\mathrm{gradU(x,y,z)}\) は、全く同じ関数でなければならないのです。

$$ つまり 、- \overrightarrow{F}(x,y,z)\cdot \frac{ d\overrightarrow {R}}{dt} = \mathrm{gradU}\cdot \frac{ d\overrightarrow {R}}{dt} かつ 「\overrightarrow {R} は任意の(実)ベクトル」なので、$$

$$-\overrightarrow{F}(x,y,z)=\mathrm{gradU}(x,y,z)\Leftrightarrow -\mathrm{gradU}(x,y,z)= \overrightarrow{F}(x,y,z) という事です。【証明終り】$$

「保存力」の物理的な意味

保存力とは力がなす仕事が経路に依存せず、始点と終点の位置だけに依存する力を言います。これは結構強い条件が課されている事になりますが、万有引力、重力(地表面での万有引力を近似したもの)、ばねの力、クーロン力などは保存力になるので、物理の理論の中では結構使い物になります。

逆に、保存力でない力の簡単な例は摩擦力などです。

一般の力ベクトルに対しては、少しだけ上述でも触れましたが、
次の形の時間変数による積分が先にあります。

$$\large T(t)-T(t_O)=\int_{t_O}^{t} \overrightarrow {F} (\tau) \cdot \frac{d \overrightarrow{r} }{d\tau}d\tau$$

ここで、1変数の通常の積分であれば積分変数をtからxに変換できます。

しかし、この場合は「接線線積分」なので、経路は1通りでは無く様々なものがあるのです。

経路によって値が異なりますから、同じ値の定積分になるという意味での積分変数の変換は無条件にはできない・・という事です。

ベクトルに対する一般の接線線積分の場合、値が始点と終点だけでは決定しないので次のように表記します:

$$一般の接線線積分の表記:\int_C \overrightarrow {F} \cdot d \overrightarrow {r}\hspace{10pt}Cは特定の関数で表される経路 $$

ここで、経路によらず「経路の始点と終点だけをしていれば値が定まる」という条件をつけると、もちろん数学的な扱いは簡単になります。
そのような条件がつけられた種類の力が保存力であり、上記のように具体的に当てはまる力も存在するというわけです。

保存力がなす仕事の値(仕事量)は始点と終点の位置だけで決まります。これを「位置エネルギー」あるいは「ポテンシャルエネルギー」などと呼びます。
これは運動エネルギーに対する用語です。位置エネルギーと運動エネルギーの合計を、力学的エネルギーと呼びます。
尚、保存力ではない摩擦力などの力に対しては、位置エネルギーは考えないのです。

これを数学的に取り扱った場合、上述いたしましたように、合成関数に対する偏微分の公式などが重要な役割を担っているというわけです。

ベクトル解析と勾配・回転・発散・・grad, rot, div

このページでは、電磁気学などで使われる「ベクトル解析」という数学の分野について説明します。
その中でも特に、勾配・発散・回転と呼ばれるものについての説明を行います。

これは「ベクトルの微積分・力学での応用」の延長線上にある理論です。純粋数学よりも、応用数学の色彩の濃い微積分学の分野になります。(もちろん、純粋数学的・解析学的に考察する事も可能です。)

★ このページは大学数学の微積分学の入門講座の10回目です。

★ このページで述べる理論では偏微分を使います。
力学での勾配についての1つの応用例も、そこで詳しく述べてあります。(これは電磁気学でも使えます。)

スカラー関数の変数が特に位置座標である事を強調する場合には「スカラー場」と言う事もあります。このページではスカラー場という名称を使います。

はじめに:「場」という考え方とベクトル解析

勾配(grad)、発散(div)、回転(rot)は「スカラー場」や「ベクトル場」というものに対して考えます。それらはいずれもスカラーやベクトルの仲間なのですが、特にどのようなスカラーやベクトルをそのように呼ぶのかを最初に述べておきます。

ベクトル場
スカラー場
電磁気学でのベクトル場とスカラー場の例 

ベクトル場

てきとうな電荷があって、まわりに別の電荷を持ってくると、電荷同士に力が働きます。この時に、後から持ってきたほうの電荷を置く場所によって働く力が変わってきます。これは数式で表すと、電荷が受ける力が座標上の点ごとに異なると考える事もできて、力を座標変数の関数で表されたベクトルで表せます。このように表されるベクトルを、「ベクトル場」と呼びます。ベクトル場の各成分は、座標成分による多変数関数になっています。(必要に応じて時間変化もするとして時間成分も加えます。)

このようなベクトル場の微積分を扱う数学の分野をベクトル解析と呼んだりします。後述するスカラー場の微積分も合わせて考えます(スカラーをベクトルに変換する操作などが含まれます) 。

★ ベクトル場の事を「ベクトル界」と言う事もあります。ベクトル界という呼び方は工学系で使われる事が多いとも言われますが、基準はありません。しかしこのサイトでは、一貫して「ベクトル場」と呼ぶ事にします。「場(field)」という語は単独でも使う事があるのに対して『界』という語は単独では普通は使わない事などは、ちょっとした理由の1つです。

「ベクトル場」の意味

x, y, z の直交座標上で、
次のように各成分が x, y, z の関数として表される空間ベクトルを「ベクトル場」と呼びます: $$\overrightarrow {F}(x,y,z)=(\hspace{3pt}F_1(x,y,z),F_2(x,y,z),F_3(x,y,z)\hspace{3pt})$$ $$ベクトルの各成分\hspace{3pt}F_1(x,y,z)などは、x,y,z の多変数関数(スカラー関数)$$ 平面ベクトルで考えたとしても、成分が1つ減るだけで同様にベクトル場を考える事ができます。4成分以上の場合も理論的には考える事は可能ですが、普通はあまり考えません。ここでは基本的に3成分の空間ベクトルのベクトル場を考えます。

ベクトル場自体は多変数関数を成分とする「ベクトル」とも言えるので、上記の形が「ベクトル場の『定義』」であるというよりは、ベクトルのうち「このような形で表されるものを特にベクトル場と呼ぶ」という感じだと言えます。

物体の軌道をベクトルで表す時に、物体の位置座標を「時間の関数」として表す方法があったわけですが、それとの違いは、成分となる関数の変数に「座標成分が含まれている」という事です。

$$\overrightarrow {X}(t)=(x(t),y(t),z(t)) といったベクトルとは少し区別されるのです。$$

2つの電荷プラス同士であれば反発し、プラスとマイナスであれば引き合います。
向きは2つの電荷を結ぶ直線に沿い、遠くに離れるほど力の大きさは弱くなります。
「電荷に働く力を「場」として見る場合は「電場」と呼びます。

スカラー場

もう1つ、ベクトル解析では「スカラー場」というものも考えて、ベクトル場との使い分けを上手に行う事が理解のポイントになっていきます。

スカラー場とは、数式的には座標成分 x, y, z を変数とする多変数関数の事です。意味としては何ら難しくないのですが、電磁気学等の理論ではベクトル場と入り乱れる形で使われるので、物理の理論の中では慣れないと少し難しく感じると思います。

「スカラー場」の意味

x, y, z の直交座標上で、
次のように x, y, z の関数として表される多変数関数を「スカラー場」と呼びます: $$\phi= \phi (x,y,z)$$ 記号はここでは「\(\phi\)ファイ」を用いていますが、別に何でも構いません。 これは数学的に見れば通常の多変数関数であって、これをスカラー場と呼ぶのは基本的には x, y, z が空間上の直交座標の成分である事が明確であって物理等で用いられる場合、特にベクトル場と区別する場合です。

電磁気学でのベクトル場とスカラー場の例

+1[C] の電荷をある場所に置いたときに、その電荷が受ける力ベクトルを位置座標の関数で表したものはベクトル場であり、特に電場と呼びます。電気だけでなく磁気についても同じ考え方ができます。磁気の場合は単独の「磁荷」は存在しないと言われていますが、仮想的に単独の「磁荷」を考えて、磁荷が受ける力のベクトル場の事を磁場と呼びます。

電磁気学では、これを総称して電磁場と呼んだりもします。磁場は電流によって作られ、電流を生じさせる電圧(起電力)は磁場の変化によって作られるという関係が知られています。電磁気学は、観測によって得られたそれらの関係を定量的に表せるように数式で整理する物理学の分野です。

ベクトル場の具体例として、+1[C] の電荷のまわりの電場は次のように表せます(その付近に、別の+1[C] の電荷を持ってくると考えます。k は比例定数です。 ):

$$\overrightarrow {E}(x,y,z)=\left(\frac{kx}{r^3}, \frac{ky}{r^3}, \frac{kz}{r^3} \right)= \left (\frac{kx}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{ky}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{kz}{(x^2+y^2+z^2)^{\frac{3}{2}}} \right )$$

$$r= \sqrt{x^2+y^2+z^2} = (x^2+y^2+z^2)^{\frac{1}{2}}の関係で処理しています。 \frac{kx}{r^3} =\frac{k}{r^2}\cdot \frac{x}{r}という事です。 $$

$$詳細は別途に記しますが、ここでの電場の「大きさ」は| \overrightarrow {E} |=\frac{k}{r^2}になります。$$

ただし、このように具体的な座標成分で記すと計算が面倒なので、大枠となる理論ではベクトル場という事だけ踏まえて数式的な処理を加えていく事が行われます。個々の具体的な事例の考察では具体的な関数にして考えたりします。

このようなベクトル場である電場に対して、ある位置での+1[C]の電荷が持つ事になる位置エネルギー(または「ポテンシャル」)を電位と言います。これは日常でもよく耳にすると思われる電圧と本質的には同じものです。電位は、ベクトルでは無く、スカラー場になります。つまり、x, y, z という3つの変数によって決まる1つの値が決まるという3変数関数になります。

$$「電位」V(x,y,z) はべクトル場ではなく、スカラー場です。$$

これらのベクトル場やスカラー場の微積分を考えられる時に使われるのが、次に記す「勾配」「発散」「回転」というものです。

ベクトル場の発散(div)と回転(rot)、スカラー場の勾配(grad)

ではここで、ベクトル解析で重要な 勾配、発散、回転 と呼ばれるものの説明をします。

div, rot, grad ・・定義と考え方
図形的にはどのような意味を持つ?

※ここでの「発散」は、「無限大に発散」という意味ではなく、また別のものです。少々分かりにくいかもしれませんが、同じ用語を使う習慣があります。
※「回転」は「循環」と呼ばれる場合もあります。

勾配、発散、回転の定義には偏微分を用います。
ベクトル場、スカラー場ともに多変数関数である事が直接的に関わっています。

div, rot, grad ・・定義と考え方

あるベクトル場 \(\overrightarrow {F}\) があったとき、それに対する発散、回転を考える事になります。(成分が x, y, z の関数になっていない通常の「ベクトル」に対しては基本的に考えないので注意。)

他方、勾配についてはスカラー場に対して定義します。

$$ベクトル場\overrightarrow {F}(x,y,z)に対して、発散:\mathrm{div} \overrightarrow {F},\hspace{10pt} 回転:\mathrm{rot} \overrightarrow {F},\hspace{10pt} を定義します。$$

$$また、スカラー場\phi (x,y,z)に対して、 勾配:\mathrm{grad} \phi ,\hspace{10pt} を定義します。$$

定義
勾配(gradient)【グレディエント】
  • スカラー場 \(\phi (x,y,z)\)に対して次のベクトル(関数)を勾配(勾配ベクトル)と呼びます。
    $$\mathrm{grad} \phi=\left(\frac{\partial \phi}{\partial x},\frac{\partial \phi}{\partial y},\frac{\partial \phi}{\partial z}\right)$$
  • \(\mathrm{grad}\phiの代わりに\nabla \phi とも書きます。\)
発散(divergence)【ダイヴァージェンス】
  • ベクトル場 \(\overrightarrow {F}(x,y,z)=(F_1,F_2,F_3)\) に対する次のスカラー(関数)を発散と呼びます。
    $$\mathrm{div} \overrightarrow {F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}$$
  • \(\mathrm{div}\overrightarrow {A}の代わりに\nabla \cdot \overrightarrow {A} とも書きます。\)
    \((F_1,F_2,F_3)=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z))\) です。
回転(rotation,curl)【ローテイション、カール】(あるいは「循環」)
  • ベクトル場 \(\overrightarrow {F}(x,y,z)=(F_1,F_2,F_3)\) に対する次のベクトル(関数)を回転と呼びます。$$\mathrm{rot} \overrightarrow {A}=\left(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right)$$
  • \(\mathrm{rot}\overrightarrow {A}の代わりに\mathrm{curl}\overrightarrow {A}、あるいは\nabla × \overrightarrow {A} とも書きます。\)

★ 見ての通り、いずれも偏微分を用いて定義されます。
偏微分とは、1つの変数だけに着目し、他の変数は定数扱いにして微分操作を行う演算です。
★ \(\nabla \cdot \overrightarrow {A},\nabla × \overrightarrow {A}\) という表記については、これらの定義による式の形がベクトルの内積や外積の計算規則と似ている事からそのようにも書く習慣があります。
★ 勾配・発散・回転自体も x, y, z を変数とするベクトルや実関数ですからベクトル場とスカラー場という事になりますが、勾配・発散・回転自体に対してはあまり「場」とは言わない事が多いです。

このように定義した時、
勾配と回転はベクトルであり、発散はスカラーである事に、少し注意してみてください。

同時に、勾配を考える対象はスカラー場であり、
発散と回転を考える対象はベクトル場であるわけです。少し整理しましょう。

対象の関数 勾配・発散・回転 ベクトル・スカラーの区別
スカラー場\(\phi (x,y,z)\) \(\mathrm{grad}\phi \) 勾配:ベクトル(成分は関数)
ベクトル場 \(\overrightarrow {F}(x,y,z)\) \(\mathrm{div}\overrightarrow {F}\) 発散:スカラー(関数)
ベクトル場 \(\overrightarrow {F}(x,y,z)\) \(\mathrm{rot}\overrightarrow {F}\) 回転:ベクトル(成分は関数)

★ 尚、発散と回転については、上記で定義した数式を「積分した形」を発散および回転と呼ぶ場合もありますが、このサイトでは一貫して上記の形の定義を用いる事にします。

図形的にはどのような意味を持つ?

こういった色々見慣れない記号をなぜ考えるのか?という話にもなるかと思いますが、これらに関しては基本的に「3次元の空間」の中のベクトルの理論ですので、図形的を持っている事が理解の1つのポイントです。

まず勾配については、偏微分を考えている事に注目すると、あるスカラー場が x方向、y方向、z方向に対して、その向きだけの変化率をベクトルで表したものになります。

次に、ベクトル場の発散についてです。これは位置が微小変化した時に、特定の量が全体として「周りからどれだけ出入りするか」の変化率を表します。単位体積から出入りする流量(※1)を表すとも言えます。
ベクトル場の発散に体積要素(dv = dxdydz)を掛け算すると、微小な領域に出入りする流量を表します。発散を面積分と重積分(※2) を結びつける公式(発散定理、ガウスの定理)もあり、それも物理で重要です。

(※1)もう少し詳しく言いますと、電磁気学の理論の一部は、流体力学の理論とのアナロジー(類似性)から類推して組み立てられています。「流量」とは流体力学で使われる用語であり、ある断面を1秒間あたりに通過する流体の体積を表します。
(※2)この場合、dv = dxdydz を考えるので体積積分とも言います)

回転については、定義式からは少し分かり辛いと思いますが、じつはこれを積分(「法線面積分」という種類の積分)をした時に文字通りの意味を表します。公式(「ストークスの定理」)を用いる事で、あるベクトル場の回転の面積分は、そのベクトル場に対して閉曲線を1周するように接線線積分したものに等しくなるのです。ベクトル場の回転は流体力学では「渦」を表現するのに使い、電磁気学などの領域でも使用します。

これらの図形的な意味を捉える時は、積分を考える必要がある場合もあります。

勾配・発散・回転に関するいくつかの公式

最後に、いくつかの公式について紹介をしておきましょう。

勾配・発散・回転の公式①:色々な組み合わせによる関係式
勾配・発散・回転の公式②:積分を含む公式 

勾配・発散・回転の公式①:色々な組み合わせによる関係式

ベクトル場の勾配・発散・回転を使ってどういう理論が展開されるのかを軽く見るために、いくつかの公式を挙げてみます。これらは、一般的には暗記するほど重要ではないと思いますが、簡単なものや特徴的なものは知っておくと物理学全般を学ぶ時に便利です。

勾配・発散・回転のいくつかの公式

\(\phi\) などはスカラー場、\(\overrightarrow {F}\) などはベクトル場であるとします。

  1. \(\mathrm{grad}(\phi_1\phi_2)=\phi_1(\mathrm{grad}\phi_2)+\phi_2(\mathrm{grad}\phi_1)\)
  2. \(\mathrm{div}(\phi\overrightarrow {F})=\mathrm{div}(\overrightarrow {F}\cdot \mathrm{grad}\phi)+\phi\mathrm{div}\overrightarrow {F}\)
  3. \(\mathrm{rot}(\mathrm{grad}\phi)=0\)
  4. \(\mathrm{div}(\mathrm{rot}\overrightarrow {F})=0\)
  5. \(\mathrm{rot}(\mathrm{rot}\overrightarrow {F})=\mathrm{grad}(\mathrm{div}\overrightarrow {F})-\left(\frac{\partial ^2F_1}{\partial x^2}+\frac{\partial^2 F_2}{\partial y^2}+\frac{\partial^2 F_3}{\partial z^2}\right)\)

\(\phi_1\phi_2\) は2つのスカラー場の積(普通の掛け算)であり、\(\phi\overrightarrow {F}\) はベクトル場の各成分に(同一の)スカラー場を掛け算したものです。\(\overrightarrow {F}\cdot \mathrm{grad}\phi\) は、内積です。
電磁気学の理論では、3番目と4番目の関係は特に重要です。
5番目の形の式は、回転はベクトル場から別のベクトル(場)を作る操作であるために考える事ができる点に注意。(勾配や発散では同じような事はできません。)

これらの公式の証明は、基本的には定義に直接当てはめて、積の微分公式などの基本公式を使って丁寧に計算する事で得られます。例えば、1番目の公式は各成分ごとに積の微分公式を使うだけです。
(偏微分の場合も通常の微分の場合と同じ形の積の微分公式が成立します。)

$$\mathrm{grad}(\phi_1\phi_2)=\left(\frac{\partial (\phi_1\phi_2) }{\partial x},\frac{\partial (\phi_1\phi_2) }{\partial y},\frac{\partial \ (\phi_1\phi_2) }{\partial z}\right)$$

$$= \left( \phi_1 \frac{\partial \phi_2}{\partial x}+ \phi_2 \frac{\partial \phi_1}{\partial x} , \phi_1 \frac{\partial \phi_2}{\partial y}+ \phi_2 \frac{\partial \phi_1 }{\partial y} , \phi_1 \frac{\partial \phi_2 }{\partial z}+ \phi_2 \frac{\partial \phi_1 }{\partial z} \right) $$

$$= \left( \phi_1 \frac{\partial \phi_2}{\partial x} , \phi_1 \frac{\partial \phi_2}{\partial y} , \phi_1 \frac{\partial \phi_2 }{\partial z}\right) + \left(\phi_2 \frac{\partial \phi_1}{\partial x} , \phi_2 \frac{\partial \phi_1 }{\partial y}, \phi_2 \frac{\partial \phi_1 }{\partial z} \right) $$

$$=\phi_1(\mathrm{grad}\phi_2)+\phi_2(\mathrm{grad}\phi_1)【1番目の公式の証明終り】$$

2番目の公式も、積の微分公式を用いるだけです。

$$\mathrm{div}(\phi\overrightarrow {F})=\frac{\partial (\phi F_1)}{\partial x}+\frac{\partial (\phi F_2)}{\partial y}+\frac{\partial (\phi F_3)}{\partial z} $$

$$ = \left( \phi \frac{\partial F_1}{\partial x}+ F_1 \frac{\partial \phi }{\partial x} \right) + \left( \phi \frac{\partial F_2}{\partial y}+ F_2 \frac{\partial \phi }{\partial y} \right) + \left( \phi \frac{\partial F_3}{\partial z} +F_3 \frac{\partial \phi }{\partial z} \right) $$

$$ = \phi \left( \frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+ \frac{\partial F_3}{\partial z}\right) + F_1 \frac{\partial \phi }{\partial x} + F_2 \frac{\partial \phi }{\partial y} + F_3 \frac{\partial \phi }{\partial z} $$

$$= \phi \mathrm{div} \overrightarrow {F}+ \overrightarrow {F} \cdot \mathrm{grad}\phi 【2番目の公式の証明終り】 $$

3番目と4番目の式は、2つの変数で続けて偏微分を行う時には偏微分の順番は関係なく同じ結果になる(※)という事を使って示します。【※解析学的に厳密に言うと条件がありますが、通常の連続関数であれば基本的に問題ありません。】

3成分のそれぞれについて0になる事を示す必要がありますが、変数が入れ替わるだけで同じ形・同じ計算ですので、第1成分(x成分)についてのみ記します。

$$\mathrm{rot}(\mathrm{grad}\phi)の第1成分=\frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial z}\right)- \frac{\partial}{\partial z} \left (\frac{\partial \phi}{\partial y} \right) = \frac{\partial^2 \phi}{\partial z \partial y }- \frac{\partial^2 \phi}{\partial y \partial z }=0 $$

$$【3番目の公式(第1成分)証明終り】 $$

$$\mathrm{div}(\mathrm{rot}\overrightarrow {F})の第1成分= \mathrm{div} \left(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z},
\frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x},
\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z} \right) + \frac{\partial}{\partial y} \left( \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x} \right) + \frac{\partial}{\partial z} \left( \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right) $$

$$= \left( \frac{\partial^2 F_3 }{\partial x \partial y }- \frac{\partial^2 F_3 }{\partial y \partial x } \right) + \left( \frac{\partial^2 F_1 }{\partial y \partial z }- \frac{\partial^2 F_1 }{\partial z \partial y } \right) + \left( \frac{\partial^2 F_2 }{\partial z \partial x }- \frac{\partial^2 F_2 }{\partial x \partial z } \right) =0 $$

$$【4番目の公式(第1成分)証明終り】(最後の式では消える項ごとにまとめました。) $$

5番目の公式に関しては少々計算が面倒ですが、定義に当てはめて丁寧に計算する事で結果が得られます。特別な定理や計算技巧は必要ありません。

この他にも、勾配・発散・回転の組み合わせによる色々な公式が存在します。

勾配・発散・回転の公式②:積分を含む公式

勾配・発散・回転のいずれも微分(偏微分)を使って定義されるものであるわけですが、発散と回転に関してはそれらに対する積分を考える事で独特な形の公式が成立します。しかも、それらは物理の理論の中でも重要です。

2つの公式を、ごく簡単にですが挙げておきます。上記でも少し触れた「発散定理(ガウスの定理)」と「ストークスの定理」です。これらは積分を含む公式であり、通常の積分ではなく「法線面積分」「接線線積分」「体積積分」という種類の積分が含まれます。

$$発散定理:\int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}$$ $$ストークスの定理:\int_S \mathrm{rot}\overrightarrow{A}\cdot d\overrightarrow{s} = \int_C \overrightarrow{A}\cdot d\overrightarrow{r}$$

ここでは、C:閉曲線、S:閉曲面の表面、V:閉曲面内の領域 を表しています。

接線線積分については力学でも使う考え方ですが、法線面積分については初歩的な運動の解析にはあまり使わないかもしれません。基本的な考え方は共通していて、微小な領域において内積の計算をしてから積分をする(合計する)というものです。

体積積分は重積分で表す事もでき、法線面積分も内積の処理をした後に重積分として表す事もできます。(しかも、その事が証明で重要です。)

初見だと得体の知れない式に見えるかと思いますが、意味するものはそれほど複雑ではないのです。

このベクトル解析の領域は、物理の電磁気学や流体力学と合わせて学んでみる事がおすすめです。数学的に詳しい考察が必要な部分と、応用で重要になる部分との関連がよく分かるようになると思います。