面積要素の変換公式

積分変数としての面積要素dSと、x、y、zで積分した時に使うdx、dy、dzを偏微分を使って結びつける公式について説明します。
積分変数に関する公式ですからもちろん積分に関係しますが、ベクトルとも関連します。
この公式はやや特殊で、使われる場面はベクトル解析の分野のごく一部分に限定されるとも言えます。しかし特定の定理の証明・考察において重要である場合があるので、詳しく解説しておきます。

■より初歩的な内容(内部リンク):

面積要素とは

法線面積分においては曲面上の微小な領域に対する法線ベクトルを考えて、その法線ベクトルの大きさはその微小領域の面積であるとします。
そして、その面積にプラスマイナスの符号があると考えた量を特に面積要素(あるいは面積元素)と呼ぶ事があります。面積要素はdSなどの記号で書かれます。

面積元素dSを大きさとする法線ベクトル(面積要素ベクトル)

式で書くと次のようになります。
各成分は対象の曲面上の微小領域をyz平面、xz平面、xy平面へ射影した領域の面積です。$$d\overrightarrow{S}=(ds_x,ds_y,ds_z)$$ この法線ベクトル\(d\overrightarrow{S}\) の事を特に指して「面積要素ベクトル」と呼ぶ事もあります。
面積要素の絶対値は、このベクトルの大きさに等しいものとします。 \(|dS|=|d\overrightarrow{S}|\)

※「面積ベクトル」という用語は、曲面全体に対する単位ベクトルの法線面積分の事を指す場合があります。
また、法線面積分を考える時には「ベクトル場と単位法線ベクトルの内積を考え、それに面積要素を乗じるという形の形で書く」という形式もあります。ここで言う単位法線ベクトルとは「大きさが1」の法線ベクトルという事です。

法線面積分の計算を進める時には、内積を計算する形で成分ごとに分解した積分を考える事がありますが、その時に考える「スカラー場に対して、yz平面、xz平面、xy平面内の領域の面積要素を積分変数とする」形の積分を単に「面積分」と呼ぶ事もあります。

変換の公式

面積要素dSと、面積要素ベクトルの成分ds、ds、dsの間には実は変換の公式が存在し、それは曲面を表す関数に対する偏微分を使って表されます。

今、曲面を表す関数としてzがz=g(x,y)のような形で表されているとします。(これはベクトル場の成分を表す関数ではなくて、曲面を表す式です。)

面積要素ベクトルの成分dsx, dsy, dszと面積要素dSの変換公式

$$dS=ds_z\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2}$$ $$ds_y=-\frac{\partial z}{\partial y}ds_z$$ $$ds_x=-\frac{\partial z}{\partial x}ds_z$$ この公式を使う時には、曲面を多面体とみなした時に微小な三角形(あるいは平行四辺形)の2辺がそれぞれxz平面上およびyz平面上にあるような分割を考えています。 (法線面積分および面積分の値は分割の仕方には依存しません。)

上記の式を組み合わせて、dsとdsについても面積要素dSとの関係式を作る事が可能です。

これらは決して使いやすい形の公式とは言えないかとは思いますが、ベクトル解析における特定の定理の証明等で使える場合もあります。

法線面積分を行う時の積分をする時の分割の仕方は任意ですが、
偏微分を使った面積要素の変換公式を考える時には
座標軸に平行な直線で区切った長方形の分割を行っています。
曲線上になっている部分は折れ線で近似して直角三角形の分割として考えます。

◆! 注意点・・・
これらの公式はあくまで
「法線面積分およびスカラー場に対する面積分における、
積分変数としての面積要素に対して成立する変換公式」であり、
通常の二重積分等での積分変数の変換(極座標変換など)では使う事はできません。
二重積分や多重積分で積分変数の変換を行う時には、関数行列式を使った変換が必要です。

また、ds/dS,ds/dS,ds/dSは図形的に余弦とみなす事ができて、方向余弦とも呼ばれます。(方向余弦は面積要素ベクトルに対してだけでなく、ベクトル一般に対して考える事ができます。)これらの面積要素ベクトルの方向余弦は、分割の方法を合わせるという前提のもとで上記の公式中の係数で表す事ができます。

余弦とは三角関数の「コーサイン」「cos」の事です。

面積要素ベクトルの方向余弦を偏微分で表す方法

角度は鋭角の場合であるとします。 $$\frac{ds_x}{dS}=\cos\alpha,\hspace{10pt}\frac{ds_y}{dS}=\cos\beta,\hspace{10pt}\frac{ds_z}{dS}=\cos\gamma \hspace{10pt}と置いた時、$$ (※これらは導関数の記号ではなく、普通の「割り算」あるいは「比」を考えています。) $$\cos\alpha=-\Large{\frac{\frac{\partial z}{\partial x}}{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2} }}$$ $$\cos\beta=-\Large{ \frac{\frac{\partial z}{\partial y}}{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+ \left(\frac{\partial z}{\partial y}\right)^2} } }$$ $$\cos\gamma=\frac{1}{\Large{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2} }}$$ 曲面の分割は、前述の変換の公式を適用する時と同じであるとしています。
また、\(dS\cos\alpha=ds_x\), \(dS\cos\beta=ds_y\), \(dS\cos\gamma=ds_z\) でもあります。
角度が鈍角の場合にはプラスマイナスの符号が変わります。

公式の導出および証明

上記の公式の証明においてはベクトル場の事は考えず、曲面の事だけを考えます。

面積要素と、面積要素ベクトルの第3成分との関係式の証明

曲面Sの領域の分割が、xy平面への射影を考えた時に辺がx軸とy軸に平行な長方形になるように考えます。曲面の外周部分に関しては長方形を対角線で区切った直角三角形を考えます。

この時に分割された各領域は、1つの共有点を始点(原点と考えます)に持つxz平面上のベクトルと、yz平面上のベクトルを2辺として構成されていると考える事ができます。

それらの2つのベクトルを \(\overrightarrow{a}\) および \(\overrightarrow{b}\) とおきます。
(位置関係は、dxとdyの符号がともにプラスである時に外積ベクトルがz軸のプラス方向を向くようにします。その側が面の表側で、面積要素ベクトルが出る側として考えます。)
今、曲面の各点のz座標はz=g(x,y)のような関数で表せる事に注意すると、
2つのベクトルはzに対するxとyでの偏微分を使って表せます。
\(\overrightarrow{a}\) の(終点の)x座標をdxとして、\(\overrightarrow{b}\) のy座標をdyとすると、次のように書けます。

$$\overrightarrow{a}=\left(dx,0,\frac{\partial z}{\partial x}dx\right),\hspace{15pt}\overrightarrow{b}=\left(0,dy,\frac{\partial z}{\partial x}dy\right)$$

2つのベクトルはそれぞれx軸上およびy軸上にあります。
そのため、1つのベクトルはy成分が0で、もう片方のベクトルはx成分が0です。
曲面を表すz=g(x,y)に対する偏微分は、図形的には座標軸に平行な直線上での近似一次式の傾きを意味します。

この時にこれら2つのベクトルにより構成される平行四辺形の面積(|dS|に等しい)は、公式を使って次のように表されます。対角線で区切った三角形の面積ならその半分になります。

$$dS=\sqrt{|\overrightarrow{a}|^2|\overrightarrow{b}|^2-(\overrightarrow{a}\cdot\overrightarrow{b})^2}$$

$$|ds|=\sqrt{ \left\{dx^2+\left(\frac{\partial z}{\partial x}\right)^2dx^2\right\} \left\{dy^2+\left(\frac{\partial z}{\partial y}\right)^2dy^2\right\} -\left(\frac{\partial z}{\partial x}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2dx^2dy^2 }$$

【平方根の中の2つの項がちょうど同じ値で引き算されて0になります。】

$$=\sqrt{dx^2dy^2+dx^2dy^2\left(\frac{\partial z}{\partial y}\right)^2+dx^2dy^2\left(\frac{\partial z}{\partial x}\right)^2}$$

ここで、平方根の中のdxdyについて2乗した形が共通してどの項にもあるのでdxdyを平方根の外に出す事もできますが、敢えてひとまずこのままにしておきます。

面積要素ベクトルの第3成分(z成分)のdsの絶対値は、微小領域をxy平面に射影した領域の面積になります。【その証明は外積ベクトルの定義からの計算と、平面上のベクトルを使った平行四辺形の面積公式から行います。】

今、微小領域をxy平面に射影すると長方形になるように分割を考えています。
よって、|ds| = |dxdy| と書けます。【外積ベクトルのz成分を考えても同じ事です。】
すると ds = dxdy という事にもなるので、
これをさきほどの計算式に代入します。

$$|dS|=\sqrt{ds_z^2+ds_z^2\left(\frac{\partial z}{\partial y}\right)^2+ds_z^2\left(\frac{\partial z}{\partial x}\right)^2}$$

ここで、dsはプラスとマイナスの両方の符号の場合があり得ます。これは図形的には、実は単純な話です。面積要素ベクトルがz軸のプラス方向側に向いていればそのz成分であるdsの符号もプラスで、逆に面積要素ベクトルがz軸のマイナス方向側に向いていればそのz成分であるdsの符号もマイナスという事になります。

すると、上式ではdsを平方根の外に出す事ができますが、それが式の右辺のプラスマイナスの符号を決める唯一の量になります。よって、面積要素dSの符号はdsによって決定する事になります。式で書けば次のようになります。これで証明完了です。

$$dS=ds_z\sqrt{1+\left(\frac{\partial z}{\partial y}\right)^2+\left(\frac{\partial z}{\partial x}\right)^2}$$

ここでの符号の問題についてはdxとdyを基準に考える事もできます。
外積ベクトル \(\overrightarrow{a}\times \overrightarrow{b}\) が面積要素ベクトルに等しいと考えると、
そのz成分はds=dxdyー0・0=dxdyで、符号まで一致している事になります。
この時、仮にdxとdyのどちらかがマイナスになると位置関係的にも、
外積ベクトル \(\overrightarrow{a}\times \overrightarrow{b}\) はz軸のマイナス側を向く事になります。

もともと符号はプラスと考えた dx と dy の符号を入れ替えた場合の3パターン。
片側だけ符号を反転させた場合のみ、外積ベクトルの方向も反転します。
この外積ベクトルが面積要素ベクトルに等しいと考えれば、
面積要素ベクトルの第3成分とdxdyの符号が一致するようになります。

面積要素ベクトルの第1成分と第2成分についての式の証明

次に、面積要素ベクトルの第1成分(x成分)と第2成分についての式も考えます。

それらを表すには外積ベクトルとして成分を計算したほうが簡単で、次のようになります。

$$再度記すと\overrightarrow{a}=\left(dx,0,\frac{\partial z}{\partial x}dx\right),\hspace{15pt}\overrightarrow{b}=\left(0,dy,\frac{\partial z}{\partial x}dy\right)としているので、$$

$$ds_x=0\cdot\frac{\partial z}{\partial y}dy- \frac{\partial z}{\partial x}dx\cdot dy=-dxdy\frac{\partial z}{\partial x}$$

ここで使っている公式は次のものです。 $$\overrightarrow{a}=(a_1,a_2,a_3),\hspace{10pt}\overrightarrow{b}=(b_1,b_2,b_3)\hspace{10pt}のもとで$$ $$\overrightarrow{a}\times \overrightarrow{b}=(a_2b_3-a_3b_2,\hspace{5pt}a_3b_1-a_1b_3,\hspace{5pt}a_1b_2-a_2b_1)$$ 外積ベクトルの各成分の絶対値は、2つのベクトルを2辺とする平行四辺形を
yz平面、xz平面、xy平面に射影した領域(それも平行四辺形。この記事内での例では長方形)の面積に等しくなっています。

ここで、先ほどの証明の最後で触れましたが面積要素ベクトルを外積ベクトルとして表した場合には符号まで一致してds=dxdyと表す事ができるので、それをそのまま代入する事ができます。すると次のようになって、示すべき式が得られます。

$$ds_x=-\frac{\partial z}{\partial x}ds_z$$

面積要素ベクトルの第2成分についても同様に、
外積ベクトルの成分として計算すると次のように示すべき式を得ます。

$$ds_y=\frac{\partial z}{\partial x}dx\cdot 0\hspace{3pt} – dx\cdot\frac{\partial z}{\partial y}dy=-dxdy\frac{\partial z}{\partial y}$$

$$よって、ds_y=-\frac{\partial z}{\partial y}ds_z$$

この面積要素の変換公式は、ストークスの定理に対する証明の1つの過程で使用する事ができます。

【証明】ガウスの発散定理

電磁気学などでよく使う「ガウスの発散定理」(「発散定理」「ガウスの定理」とも)の証明をします。
ベクトル解析の分野の中の基礎的で重要な定理の1つになります。

電磁気学の「ガウスの法則」は、「ガウスの発散定理」と関係が深いですが、あくまで静電場に関して成立する事実関係としての「法則」を表すものとして用語の使い分けがなされるのが一般的です。

関連事項(内部リンク)

定理の内容

$$以下、ベクトル場を\overrightarrow{F}=(F_1,\hspace{2pt}F_2,\hspace{2pt}F_3)=(F_1(x,y,z),\hspace{2pt}F_2(x,y,z),\hspace{2pt}F_3(x,y,z))\hspace{2pt}とします。$$

ガウスの発散定理とは次のようなものです。

ガウスの発散定理

ある閉曲面内の体積分と法線面積分について、次の関係式が成立します。 $$\int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}$$ $$あるいは、\int\int\int_V \mathrm{div}\overrightarrow{F} dxdydz = \int\int_S F_1 dzdy + \int\int_S F_2 dzdx+ \int\int_S F_3 dydx$$ $$S:閉曲面 V:閉曲面で囲まれた空間領域 $$ $$d\overrightarrow{s}=(ds_x,ds_y,ds_z)【成分には正負の符号がある事に注意】$$ 法線面積分を考えた時に使う面積要素 dxdy 等は、dsx 等と同じく、符号を持つので注意。曲面に表と裏を必ず決め、「裏→表」の向きに面積要素のベクトル\(d\overrightarrow{s}\) を立てて向きと成分の符号を考えます。

特に、次の3式が同時に成立し、加え合わせる事で定理全体が成立する事になります。$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_S F_1 dydz$$ $$\int\int\int_V\frac{\partial F_2}{\partial y}dxdydz=\int\int_S F_2 dzdx$$ $$\int\int\int_V\frac{\partial F_3}{\partial z}dxdydz=\int\int_S F_3 dydx$$

積分の表記の仕方としては、次のように記す事もあります。これらは書き方を変えているだけで、全く同じ積分を表すという意味です。dxdyなどの表記の場合に積分記号を2つ重ねる表記にするのは、具体的な計算をする時には重積分の形になる事によります。$$\int_SF_1ds_x=\int\int_SF_1dydz$$ $$\int_SF_2ds_y=\int\int_SF_2dzdx$$ $$\int_SF_3ds_y=\int\int_SF_3dxdy$$

基本的な考え方は、複素関数論におけるグリーンの公式に似ています。要するに、ある多変数のスカラー関数について、変数が2つの特定の値の時に差をとったものは「その関数の偏微分の定積分」に等しいはず・・という発想を使います。

「スカラー関数の偏微分」を「微分する変数で定積分」する事により、特定の値のスカラー関数の差を作る事ができます。重積分の中でこの考え方を使う時は、偏微分に対する定積分の積分区間の端は一般には「関数の形」になります(yで積分するなら例えばy1=y1(x)というxの関数)。

発想自体は実はすごくシンプルなのですが、幾つか知っておかないとならない定義や公式がある事が「難しい」要因になります。特に必要になる事項を4つほど簡単に整理しておきます。

使う定義と公式の整理
①ベクトル場の「発散」の定義

ベクトル場\(\overrightarrow{F}\) に対する「発散」は次のようなスカラー関数です。 $$\mathrm{div}\overrightarrow{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y} +\frac{\partial F_3}{\partial z}$$

②法線面積分の定義

法線面積分は、次のように計算できるものとして定義されます。 $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int_S (F_1 ds_z + F_2 ds_y + F_3 ds_z)=\int_SF_1 ds_x+\int_SF_2 ds_y+\int_SF_3 ds_z$$積分記号に添えてあるSは、「特定の閉曲面S」の表面の全域(あるいはそれに対応する領域)に渡って積分をするという意味です。dsz および dxdy 等を面積要素とも言います。(dsz および dxdy は共にxy平面上の領域の面積要素。)

③ \(d\overrightarrow{s} \)の座標成分と射影面積の関係

$$ d\overrightarrow{s}=( ds_x , ds_y , ds_z ) $$

  • \(|ds_x| \):微小領域の「yz平面」への射影領域の面積
  • \(|ds_y| \):微小領域の「xz平面」への射影領域の面積
  • \(|ds_z| \) :微小領域の「xy平面」への射影領域の面積

特に三角形の微小領域を考えると、外積ベクトルの性質によりこれらの関係が明確になります。

④体積分と重積分の関係

体積分は、特定の空間領域の全域に渡ってスカラー関数を積分するものです $$\int_V G(x,y,z) dv=\int\int\int_V G(x,y,z) dxdydz$$。dv =dxdydz を体積要素とも呼びます。
特別な場合では体積要素 dv のまま具体的な計算もできますが、通常は体積要素を dxdydz の形にして重積分にしないと計算は難しい事が多いです。
具体的な関数があって積分の値を計算する時は、次のように、通常の重積分と同じく累次積分を行います。 $$\int\int\int_V G(x,y,z) dxdydz=\int_{Z1}^{Z2}\int_{Y1}^{Y2}\int_{X1}^{X2} G(x,y,z) dxdydz$$ この時に積分する変数の順番は変えられますが、積分する領域の形状によっては、初めに積分する2つの積分区間は定数ではなくて関数になります。ここでの例だと X1=X1(y,z), Y1=Y1(z) 等です。

発散定理(ガウスの定理)の考え方②

発散定理における閉曲面の扱い

積分する範囲が「閉曲面」である事は定理の性質・証明において重要です。

閉曲面とは球や楕円体などの閉じられた曲面の事です。
(ただし直方体等の「角ばった箇所」がある閉じられた立体においても、定理は成立します。証明の過程を見ると、その事は分かりやすいかと思います。)

閉曲面は、凹んだような箇所がある曲面である場合もあります。
しかし、発散定理の証明においては実は「凹みがない」球のような曲面で成立する事を示せば十分です。それは、面積分に関して曲面は分割するできるからです。

例えば閉曲面を平面で真っ二つにした場合には、切断面の部分(2つに分かれた閉曲面の共有部分)では2つの積分の値が絶対値は同じで逆符号になります。それを加え合わせるとゼロになります。これは、共有される切断面においては「ベクトル場は同じ」で分割された2つの閉曲面同士で「法線ベクトルが絶対値は同じで逆符号」である事に起因します。

そのため、凹みのある閉曲面は出っ張ったところで切断して2つ以上の閉曲面に分けてしまう事により、法線面積分も2つの「凹みのない」閉曲面での法線面積分の和にできるのです。
(体積分に関しても、閉曲面を分割すると分割した領域での体積分を加えれば全体になります。)

つまり、発散定理の証明は「凹みのない」閉曲面で示されれば、凹みのある閉曲面で成立する事も示されるという事です。

発散定理(ガウスの定理)における閉曲面の扱い

証明

まず、次式から証明します。閉曲面は凹みがないものとします。

$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_S F_1 dydz$$

これ1つが証明できれば、他の2式も同じ形なので全く同様に証明できます。
最後に3式を加え合わせれば発散定理の形になります。

積分する前の段階で微小領域を考えると、\(d\overrightarrow{s}=( ds_x , ds_y , ds_z )\)の第1成分dsの絶対値は微小領域のyz平面への射影面積になります。

ところで、yz平面への「同じ射影の領域」を持つ閉曲面の微小領域は必ず2つ存在し、それらの第1成分は必ず符号のプラスマイナスが異なります。同じ射影の領域を持ちますから\(d\overrightarrow{s}\)の第1成分は「同じ大きさで異符号」です。

しかも、その組み合わせの合計で閉曲面は全て覆える事になります。ベクトル場の第1成分Fとdsの積を合計したものはyz平面上の積分になります。【Fは関数F(x,y,z) である事に注意。】
ただし、yz平面上で積分をすると、対応する閉曲面の領域は2つありますから、dsの符号がプラスになる部分とマイナスになる部分に分けられます。

射影領域と閉曲面の関係
凹みのない閉曲面ではxy平面への同一の射影領域を持つ部分が2つ存在し、それらの微小領域に対する法線ベクトルのz成分は互いに異符号になります。yz平面、xz平面への射影についても全く同様に考える事ができます。

ここで、閉曲面Sのyz平面への射影領域であり、yz平面での積分範囲でもある領域をSyzと置きます。
この平面領域Syzは、「表と裏」に関して次の約束事をしておきます:

◆約束事:平面領域Syz
x方向のプラス方向に面した部分が「表」でx方向のマイナス方向に面した部分が「裏」
と決めます。
つまりこの領域Syz上での面積要素のベクトルは\(d\overrightarrow{s}=(ds_x,0,0)\) であり「ds およびdydzの符号は、必ずプラス符号として考える」という事です。
発散定理(ガウスの定理)の証明
ベクトル場の第3成分とxy平面(の射影)での積分を考えた場合はこの図のようになります。図の下側の領域では「もとの閉曲面Sでの面積要素」の符号が全てマイナスなので、「面積要素がプラス符号の平面領域(図のSxy)」での積分として表記する場合には積分全体に対してマイナス符号をつける形になります。

またyとzの関数X(y,z)とX(y,z)を考えて、
それらは各々「yz平面への同じ射影領域を持つ」2つの微小領域でのx座標であるとします。
(領域を2分割して考える時に「x座標の『yとzによる関数』の形」が違うためにそのように考えます。)
すると、閉曲面全体のベクトル場の第1成分Fのyz平面上の領域Syzでの積分は、
次のように差の形で表せる事になります。

$$\int_SF_1ds_x=\int\int_{Syz}F_1(X_B,y,z)dydz-\int\int_{Syz}F_1(X_A,y,z)dydz$$

第1項目はもとの閉曲面で面積要素のベクトルの成分dsがプラス符号である領域の積分です。
第2項目はもとの閉曲面で面積要素のベクトルの成分dsがマイナス符号である領域の積分であり、
領域Syzでの積分では面積要素はプラス符号で扱うと約束しているので「マイナス」は積分全体につける形をとっているわけです。

ここで、差の形になっている部分を、「x方向の『偏微分の定積分』」として考える事ができます。

$$\int\int_{Syz}F_1(X_B,y,z)dydz-\int\int_{Syz}F_1(X_A,y,z)dydz=\int\int_{Syz}\left(\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dx\right)dydz$$

領域Syzでの積分についてもy方向とz方向の積分区間を書くと次のようになります。

$$\int\int_{Syz}\left(\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dx\right)dydz=\int_{\large{Z_B}}^{\large{Z_A}}\int_{\large{Y_B}}^{\large{Y_A}}\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dxdydz$$

$$=\int\int\int_V\frac{\partial F_1(x,y,z)}{\partial x}dxdydz$$

ここで重積分の形にした箇所のdx、dy、dzは全てプラス符号です。つまり「積分変数自体の符号は気にしない」で計算可能な、通常の積分として考えてよい事になります。(体積要素としてdxdydzをdvと置き、1つの塊として見た時も符号はプラスだけで考えます。)

重積分を累次積分する時の積分の順番は入れ替え可能ですが、積分区間は最後に積分するところを除いて一般には関数になります。
例えば上記の場合の重積分の箇所においてx→y→zの順で累次積分をする場合、積分区間に入っているXとXはyとzの関数【定数である事もあり得る】であり、YとYはzの関数、ZとZは何らかの定数という事になります。
累次積分の順番を変えるとどの積分区間が何の変数のどういう関数形になっているかは変わりますが、同じ関数を同じ領域で積分すれば同じ値を得ます。

これで証明の大体の部分は完了しています。

ところで一番最初の積分については、dsをdydzの形で表記する事もできます。(dxdyの形にする時は、積分記号は重積分のように2つ重ねる表記にします。)

$$\int_SF_1ds_x=\int\int_SF_1dydz$$

これらの結果を等号で結ぶと、証明すべき式になります。

$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_SF_1dydz【証明終り】$$

同様に、Fについてはxz平面上の積分を考えて、差の形をyでの偏微分の定積分で表します。Fについてはxy平面上の積分を考えて、差の形をxでの偏微分の定積分で表します。

$$\int\int\int_V\frac{\partial F_2}{\partial y}dxdydz=\int\int_SF_2dzdx$$

$$\int\int\int_V\frac{\partial F_3}{\partial z}dxdydz=\int\int_SF_3dxdy$$

3式を加え合わせると次のようになります。

$$\int\int\int_V\left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dxdydz=\int\int_S(F_1dydz+F_2dzdx+F_3dxdy)$$

$$\Leftrightarrow \int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}【発散定理の形】$$

上記の発散定理における閉曲面の扱いで記したように、閉曲面に凹みがある場合でも領域を切断して分割する事で定理が成立します。

法線面積分の定義と性質

ベクトル解析電磁気学の分野で使用する「法線面積分」は、閉曲面に分布するベクトル場に対して定義されるものです。ベクトル場とは、すなわちベクトルの3成分のいずれもがx、y、zのスカラー関数になっているベクトルです。

閉曲面と閉曲線
閉曲面とは、例えば球や楕円体などの、「閉じた」曲面です。(ドーナツ型・うきわ型の「トーラス」なども含みます。)また、閉曲線とは、円や楕円のように、ぐるっと一周つながった曲線を言います。

★書籍の紙面ではベクトルを表す表記として文字をボールド体にする方法が多く使われますが、このページではベクトルは一貫して文字の上に矢印を添える表記方法を採用します。
スカラー関数に対する「面積分」は似ていますが別物なので注意。具体的な計算方法も異なります。

ベクトルの内積の考え方を使用します。

法線面積分を表す式には幾つかの表記方法がありますが、次のようになります。いずれも等号で結ぶ事ができ、計算すれば同じ値になります。

「法線面積分」の定義

$$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int_S (F_1 ds_1 + F_2 ds_2 + F_3 ds_3)=\int_SF_1 ds_1+\int_SF_2 ds_2+\int_SF_3 ds_3$$ $$\overrightarrow{F}=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z))$$ $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}を、\int_S \overrightarrow{F}\cdot \overrightarrow{n}dsとも書きます。$$ 積分記号に添えてあるSは、surface(表面)からの記号として一般的に使われる記号です。
特定の閉曲面の表面全体(表側あるいは裏側のいずれかの全体)を表します。

また、二重積分で表して計算する事も可能です。その場合、各項の具体的な計算をする時には2方向の積分区間をきちんと指定します。 $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int\int_S (F_1 dydz + F_2 dzdx + F_3 dxdy)$$ $$=\int_{Y1}^{Y2}\int_{Z1}^{Z2}F_1 dydz+\int_{Z1}^{Z2}\int_{X1}^{X2}F_2 dzdx+\int_{X1}^{X2}\int_{Y1}^{Y2}F_3 dxdy$$

\(\overrightarrow{n}\) は、曲面の各点に対する単位法線ベクトルを表し、長さは1で曲面に対し垂直な向きのものです。また、\(d\overrightarrow{s}=ds\overrightarrow{n}\) になります。詳しくは次のようになります。

法線ベクトル

$$ d\overrightarrow{s}=( ds_1 , ds_2 , ds_3 ) $$ $$|\overrightarrow{n}|=1,\hspace{10pt}|d\overrightarrow{s}|=ds=\sqrt{ds_1^2 + ds_2^2 + ds_3^2},\hspace{10pt}d\overrightarrow{s}=ds\overrightarrow{n}$$ \(d\overrightarrow{s}\) および単位法線ベクトル\(d\overrightarrow{n}\) は、閉曲面上の各点から曲面の「裏側→表側」に向かう向きに伸びると約束します。
各成分は、微小面積の平面への「射影」になっています。

  • \(|ds_1| \)=「yz平面」への射影領域の面積
  • \(|ds_2| \)=「xz平面」への射影領域の面積
  • \(|ds_3| \) =「xy平面」への射影領域の面積
証明:微小面積として三角形を考えた場合、\(d\overrightarrow{s}\) は2辺を成すベクトルで作られる外積ベクトルの半分として表されます。
外積ベクトルの成分の大きさ(絶対値)はyz平面、xz平面、xy平面への三角形の射影の面積に等しくなりますから、\(d\overrightarrow{s}=( ds_1 , ds_2 , ds_3 )\) の各成分の大きさも、垂直な3つ平面への微小面積の射影面積に等しくなる事が示されます。

法線ベクトルの成分ds、ds、dsには通常のベクトルと同じく符号があります。
式としては、法線ベクトルと射影平面に垂直な軸がなす角の余弦の符号と同じプラスマイナスの符号を持つと定義します。例えば、dsであれば対応する射影平面がyz平面で、それに垂直な軸はx軸ですから、法線ベクトルとx軸がなす角を見ます。それが鋭角であればdsの符号は+で、鈍角であれば-の符号になります。その符号は、座標上の図に描いてみた時の向きから判定したものともちろん一致します。

図で状況を見ながら式の意味を考えると分かりやすいでしょう。
つまり、球面などの閉曲面の各点にベクトル場がぎっしり詰まっている感じです。それを曲面全体に渡って積分します。その際に、ベクトル場の「曲面の法線ベクトルの向きの成分だけ」を内積によって取り出したものを考えているわけです。

曲面に垂直な法線ベクトル(大きさは微小面積)を考え、ベクトル場との内積を考えます。法線ベクトルのうち、長さを1としたものを「単位法線ベクトル」と言います。

微小面積を大きさに持つ法線ベクトル\(d\overrightarrow{s}=ds\overrightarrow{n}\)と微小面積の射影面積との関係も、図に描いて外積ベクトルとして捉えると見通しがよいです。

法線ベクトルと外積の関係
平行四辺形で考えても本質は同じです。外積を使うと少見通しはよくなります。内積がスカラーであるのに対し、外積はベクトルである事に注意。微小な三角形の面積を外積ベクトルの大きさで表すと、そのベクトルの各成分は微小三角形のyz、xz、xy平面への射影面積になります。

法線ベクトル\(d\overrightarrow{s}\)の成分の符号については、個々の法線ベクトルについて例えば(-1,2,1)といった成分表示となる事からプラスマイナスの符号を持ちます。各成分の「大きさ」については、微小面積のyz平面、xz平面、xy平面への射影面積に等しくなるという事です。

法線ベクトルの成分の符号
法線ベクトルの向きは「閉曲面の裏から表に向かう方向」にとります。その成分は法線ベクトルの具体的な向きによって+か―の符号があります。式で書く場合は、法線ベクトルと軸とのなす角の余弦によって符号を判定します。

積分内の内積の部分については、余弦を使ったほうの内積の定義として書く場合もあります。

$$\overrightarrow{F}\cdot d\overrightarrow{s}=|\overrightarrow{F}||\overrightarrow{s}|\cos \theta$$

ただし、電磁気学などで法線面積分を考える場合では、特別な形のモデルで最初から考える場合も多いのです。例えば、ベクトル場が曲面に全て垂直であれば公式を使わなくても角度は0とすぐに判断できて、余弦は1になります。

グリーンの公式【複素関数論】

ここでは複素関数論におけるグリーンの公式と呼ばれる式について説明します。
同じ名前の公式はいくつもあって大変紛らわしいのですが、ここでは複素関数論の、複素数の積分に関して成立する関係式について述べます。

この公式は、複素関数論で重要なコーシーの積分定理を証明するのに必要です。

複素数の定義と基本事項については別途に詳しくまとめています。

グリーンの公式とは?

公式の内容 ■ 公式の別の表記法 ■ 複素関数論の中での位置付け 

公式の内容

複素関数論におけるグリーンの公式とは、次の複素数の積分に関する関係式を言います。

グリーンの公式 $$\int_C f(z)dz=\int\int_D\left(i\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)f(x,y)dxdy$$ $$z=x+iy,\hspace{5pt}C:閉曲線,\hspace{5pt}D:閉曲線Cで囲まれる領域$$

$$ここで、\left(i\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)f(x,y)=\left(i\frac{\partial f(x,y)}{\partial x}-\frac{\partial f(x,y)}{\partial y}\right)\hspace{5pt}の事です。$$

また、ここでのxやyでの偏微分は、
これらの変数を「独立変数であるように見なした時の」偏微分の計算を指します。

そのように言うのは、ここでは積分の経路として閉曲線を指定しますから、xとyは独立変数ではなく従属関係にあるからです。(例えばy=2xなど。これについてはこのページの後半でも再度触れます。 )

ただし、ここでの偏微分で表される計算は、通常の独立多変数に対する偏微分の時と同じく、「yを固定してxだけで微分操作をする」という意味である・・という事です。

グリーンの公式【複素関数論】1
グリーンの公式とコーシーの積分定理は、複素関数論の積分の理論の中でも重要な箇所の1つですが、いかんせん、少々分かりにくいところでもあるかと思います。
この結果自体が得られると、その後の理論はしばらくの間は割と難しい理屈が少なく進んでいくところがあります。

公式の別の表記法

全く同じ公式を、別の表記で表す事もあります。

これは、形式的には「複素変数zで偏微分する」形で表されますが、じつはこれは普通の意味での偏微分ではなく、複素関数論において特別に定義される記号です。

定義

z=x+iyの時、記号を次のように定義します:

$$\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$$ $$\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$$

この記号を使うと、上記のグリーンの公式は次のように書けます。

グリーンの公式の別の表記法 $$\int_C f(z)dz=2i\int\int_D\frac{\partial}{\partial \bar{z}}f(x,y)dxdy$$ $$z=x+iy,\hspace{5pt}C:閉曲線,\hspace{5pt}D:閉曲線Cで囲まれる領域$$

どちらの表記法でも問題ないですが、記号の定義を知らないと、「共役複素数で偏微分って何の事・・??」と、思ってしまうかもしれませんね。その記号は、あくまで定義によって特別に意味が約束されているものです。

複素関数論の中での位置付け

冒頭で少し触れていますが複素関数論の複素数の積分論の中で、「コーシーの積分定理」というものがあります。これは、正則関数を閉曲線に沿って定積分すると必ず0になるというもので、これをもとに種々の複素数の積分の理論は組み立てられています。

それで、その積分定理は自明な事かというと、そうではありません。その定理の証明のためにグリーンの公式が使用されます。

ですから複素関数論におけるグリーンの公式とは、言ってみれば理論上重要な定理の「補題」的な位置付けにあると言えると思います。

もちろん、必要があれば他の用途に使う事もできます。また、考え方自体は多変数関数の線積分や、ベクトル解析に共通するところがあるのでそれらの分野にも考え方を適用できます。

グリーンの公式の証明

証明のポイント ■ 積分経路と媒介変数 ■ 証明の計算 

証明のポイント

積分の経路として「閉曲線」考えている事と、定積分を行う場合には複素数の実部と虚部に分けて考えてよい事がポイントです。

公式の内容を見ると、曲線上の積分を領域内の重積分で表せるという事であるわけですが、ある関数はその導関数の定積分として上手く表せる事を利用します。この考え方はベクトル解析での定理の一部を示す時にも使用されます。

導関数をうまく使う $$\int_a^b\frac{df}{dx}dx=f(b)-f(a)$$

考え方はシンプルで、微積分学の基本定理をうまく使います。

定積分を考える時には項が2つ出てきてしまいますが、閉曲線を考えている事がポイントで、上手い具合に閉曲線の「上部分」「下部分」等の2つの部分に分けて必要な項を作れるのです。この時、後述しますがxとyによる積分それぞれについてそれらを考えるので、少なくとも4つの経路を考え、最後に合算します。

証明の後半では重積分の結果は積分変数の順序によらない事も使用します。

積分経路と媒介変数

dz=dx+idy において、閉曲線Cを指定する場合はxとyに従属関係があって、
1つの媒介変数tで表す事ができます。

$$x=x(t),\hspace{5pt}y=y(t)$$

複素数の積分と積分経路
積分経路が指定されているという事は、例えばy=3x などの何らかの関係があるという事です。
(より一般的には閉曲線ならg(x,y)=0が成立。例えば円や楕円。)
積分する時にはxとyを別々に考える事ができるのであまり気にしなくてもよいのですが、 補足的に、述べておきます。

そこで、微分についても z=z(x,y) に対して次の関係があるわけです:

$$dz=\frac{\partial z}{\partial x}\frac{dx}{dt}dt+ \frac{\partial z}{\partial y}\frac{dy}{dt}dt $$

ここで、x、yによる偏微分は
「あたかも独立変数であるように、1つの変数のみで微分する」操作の意味です。

tによる微分の部分は、媒介変数が1つだけですので、
偏微分として書かなくてもよく通常の微分になります。

さて、となると、z=x+iy ですから、

$$ \frac{\partial z}{\partial x} =1,\hspace{10pt} \frac{\partial z}{\partial y} =i $$

となるので結局、

$$dz=\frac{dx}{dt}dt+ i\frac{dy}{dt}dt $$

という事になり、tで定積分を行う場合には1変数の合成関数の積分公式がそのまま使えて、結局xとyのそれぞれで積分して加えればよいという事です。

合成関数の積分公式を使える。 $$\int_U^Wf(z)dz=\int_{T1}^{T2}f(z)\frac{dz}{dt}dt=\int_{T1}^{T2}f(x,y)\frac{dx}{dt}dt+ \int_{T1}^{T2}if(x,y)\frac{dy}{dt}dt $$ $$=\int_{X1}^{X2}f(x,y)dx+\int_{Y1}^{Y2}f(x,y)dy$$

定積分においては、積分変数以外の変数は定数扱いで計算するとします。

もともとdz=dx+idyなので最初から積分する時には定積分を2つの部分の和にできると考えてもよいのですが、ここでは積分経路上でyとxには従属関係がある点に注意して説明をしておきました。

証明の計算

【グリーンの公式の証明】

さて、閉曲線上を経路として定積分する時にxとyに分けて定積分すればよいわけですが、ここでさらに、積分経路もxとyの各々について2つ以上に分けます。少なくとも4つの定積分を考える事がポイントです。

まずxについて。
閉曲線を切断するような、yが一定の直線分と、平面図上で閉曲線の上側の部分と下側の部分を考えます。この時、直線分に対して必ず上下に閉曲線の一部が対になって存在するようにします。このような閉曲線の分割を最低でも1つ行い、ものによっては2つ以上行います。

グリーンの公式【複素関数論】2
直線状の補助線(図の Cx 等)は、なくても証明できます。
ただし、ここでは分かりやすくするために入れています。

ここで、f(z)=f(x,y)=f(x+iy) である事に注意します。まず「直線状の線分と閉曲線の下側の経路」(必ずしもつながってなくてもいい)で構成されるxによる定積分を、ぐるりと反時計周りに1周するように考えます。

$$\int_{C1}f(z)dx-\int_{CX}f(z)dx=\int_{X1}^{X2}f(x+iy)dx- \int_{X1}^{X2}f(x+iY_1)dx $$

$$=\int_{X1}^{X2} \left( – \int_ {y(x)}^{Y1} \frac{\partial}{ \partial y}f(x+iy)dy\right)dx = -\int_{X1}^{X2} \left(\int_ {y(x)}^{Y1} \frac{\partial}{ \partial y}f(x+iy)dy\right)dx $$

分割に使う直線分が2つ以上の場合も同様に定積分を考えておきます。

関数f(x,y)=f(x+iy) を、積分変数のみに着目した意味での(偏)導関数を定積分したものと考えるわけです。(プライスマイナスの符号に注意。)この考え方はベクトル解析などでも使います。

次に、 「直線分と閉曲線の上側の経路」で構成されるxによる定積分を、反時計周りに1周するように考えます。この時、直線部分は上記と同じものを共有してますが、積分の方向が逆です。曲線部分も積分の方向が逆なので符号が変わる点がポイントです。

$$-\int_{C2}f(z)dx+\int_{CX}f(z)dx=-\int_{X1}^{X2}f(x+iy)dx+\int_{X1}^{X2}f(x+iY_1)dx $$

$$= -\int_{X1}^{X2} \left( \int_{Y1}^{Y(x)}\frac{\partial}{ \partial y}f(x+iy)dy\right)dx $$

さきほどとは曲線が別のものになるので、y = y(x) ではなく y = Y(x) という形に書いて区別しています。

ここで、上記の2つのxについての「反時計回り」の定積分を加え合わせると、

$$\left( \int_{C1}f(z)dx-\int_{CX}f(z)dx \right)+ \left( -\int_{C2}f(z)dx+\int_{CX}f(z)dx \right) = \int_{C1}f(z)dx -\int_{C2}f(z)dx $$

$$= -\int_{X1}^{X2} \left( \int_ {y(x)}^{Y1} \frac{\partial}{ \partial y}f(x+iy)dy\right)dx -\int_{X1}^{X2} \left( \int_{Y1}^{Y(x)}\frac{\partial}{ \partial y}f(x+iy)dy\right)dx $$

$$= -\int_{X1}^{X2} \int_{y(x)}^{Y1} \frac{\partial f(x+iy) }{ \partial y}dxdy- \int_{X1}^{X2} \int_{Y1}^{Y(x)} \frac{\partial f(x+iy) }{ \partial y}dxdy $$

$$ =-\int_{X1}^{X2} \int_{y(x)}^{Y(x)} \frac{\partial f(x+iy) }{ \partial y}dxdy=-\int\int_D \frac{\partial f(x,y) }{ \partial y}dxdy $$

このように、もとの関数を(1つの変数以外は固定する意味で)偏微分したものの領域内に渡って重積分したものになるわけです。結果的にマイナス符号がついたのは「反時計回り」を考えた事に由来し、仮に「時計回り」を考えるならこの符号は逆になりプラスになります。xが変数の場合、右から左と、左から右に積分する場合では符号は逆になります。

上記のように重積分の形になると、それを「領域全体にわたって行う積分」とみなせます。

重積分についての補足
【重積分】通常の2変数の重積分は「体積」を計算する事に使ったりします。 複素関数の場合には体積を計算しているわけではありませんが、行っている計算と考え方は同じです。

分割が2つ以上の場合でも、定積分を全て加え合わせて閉曲線が全てつながるようにします。(補助的に考えている直線状の線分の部分は、分割がいくつであっても全てプラスマイナスが打ち消し合って定積分の合計は0になります。)

今度は、yについての定積分についても同じ事をやります。途中の計算は全く同じなので少々省きますが、次のようになるのです。

$$\left( \int_{C3}f(z)dy-\int_{CY}f(z)dy \right)+ \left( -\int_{C4}f(z)dy+\int_{CY}f(z)dy \right) = \int_{C3}f(z)dy -\int_{C4}f(z)dy $$

$$ =\int_{Ya}^{Yb} \int_{x(y)}^{X(y)} \frac{\partial f(x+iy) }{ \partial x}dxdy=\int\int_D \frac{\partial f(x+iy) }{ \partial x}dxdy $$

yのほうには i を添えたうえで、得られた結果を合わせると次のようになります。

$$ \int_{C1}f(z)dx -\int_{C2}f(z)dx + i\int_{C3}f(z)dy -i\int_{C4}f(z)dy $$

$$= \int\int_D \left( – \frac{\partial }{ \partial y} +i\frac{\partial }{ \partial x} \right) f(x+iy) dxdy= \int\int_D \left( i\frac{\partial }{ \partial x} – \frac{\partial }{ \partial y} \right) f(x,y) dxdy $$

分割した部分がxとyについて合わせて4つを超える場合でも同じで、全て加え合わせます。

再びdz=dx+ i dyに戻ると、閉曲線C上で反時計周りに定積分を行う場合は次のようになります。

$$\int_Cf(z)dz=\int_Cf(x,y)dx+i\int_Cf(x,y)dy$$

$$= \int_{C1}f(z)dx -\int_{C2}f(z)dx + i\int_{C3}f(z)dy -i\int_{C4}f(z)dy $$

分割の部分が多い場合も同様です。もとの閉曲線の曲線部分が全て入るようにします。

xについては、左→右:+符号 右→左:逆で-符号
yについては下→上:+符号 上→下:-符号 として部分ごとに定積分を対応させます。

これによって、結局公式の通りの関係式が成立する事になります。

$$ \int_Cf(z)dz=\int_Cf(x,y)dx+i\int_Cf(x,y)dy = \int\int_D \left( i\frac{\partial }{ \partial x} – \frac{\partial }{ \partial y} \right) f(x,y) dxdy 【証明終り】$$

参考:長方形による近似を使う証明の方法

参考までに、積分経路として小さな「長方形」を考えて、これの合計として任意の閉曲線を経路とする時も成立するという証明の仕方もあります。

こちらの考え方だと、長方形ですので最初からxのみ、yのみという考え方が使えて、積分の計算がらくです。積分の方向を反時計回りという事で決めておけば、ぴったり隣り合う長方形同士の接する辺同士は積分が打ち消し合って周囲だけの分が経路として残るというわけです。

ただしこの方法の場合、じつは経路自体の形が「長方形 → 任意の(滑らかな)閉曲線」に移行する段階の時の話が少し面倒です。実際、円のような曲線を多角形で近似するような事は珍しくありませんが、「長方形」で近似するという事は、他の数学の分野ではあまり多くやらない事かと思います。一般の多くの複素関数論の教科書では、この詳細をあまり書きたがらない傾向があるように思います。

本質的には上記で述べた証明方法と比べて、やる事はそんなに変わりません。

グリーンの公式【複素関数論】3
長方形の経路を組み合わせて証明する方法もあります。

前述の通り、複素関数論におけるグリーンの公式は、コーシーの積分定理に結びつく事で、さらなる積分の理論を組み立てる事に使われていきます。

複素数の微分【複素関数論】

このページでは複素数微分について述べます。
大学数学では複素関数論(あるいは単に「関数論」)と呼ばれる領域です。

数学上の理論でも応用でも重要なのはむしろ複素数の「積分」のほうですが、面倒なのも積分のほうです。

まず基本的な考え方として微分のほうをここでは説明します。

複素数の微分・・実数の時と何が違う?

まず、具体的な初等関数を微分するレベルにおいては実数の時とほとんど同じです。

定義域が複素数の初等関数の微分・・実数の時とほぼ同じ
テイラー展開・マクローリン展開も同様に可能
複素関数論に特有の議論はあるの? 

複素関数の微分
複素関数論(複素数の微積分)・・実数の時と同じように考えてよいところと、
別の数学的考察が必要になる部分のポイントをこのページでは説明します。

定義域が複素数の初等関数の微分・・実数の時とほぼ同じ

複素数を定義域 (変数の範囲)および値域(関数の値の範囲) に持つ関数を複素関数といます。複素関数の微積分を扱う数学の領域を複素関数論(あるいは略して「関数論」)とも言います。複素関数に対して、通常の実数の範囲の関数を「実関数」と呼ぶ事もあります。慣習で、複素関数の変数は x ではなく z で表す事が多いです。ただし、定義域が複素数範囲である事を明示すれば本質的に何の文字を使おうが間違いではありません。

結論を先に言うと、初等関数の定義域を複素数に拡張したものを微分してできる導関数は、定義域が実数の時と同じです。

複素関数の微分公式【実関数と同じ】

初等関数に関しては、実関数の時と同じ形の次の公式が成立します。 $$\frac{d}{dz}z^r=rz^{r-1}$$ $$\frac{d}{dz}e^z=e^z$$ $$\frac{d}{dz}\cos z =-\sin z$$ $$\frac{d}{dz}\sin z = \cos z$$ $$f(z)g(z)=\frac{df}{dz}g(z)+\frac{dg}{dz}f(z)$$ その他、実関数に関する公式は大体そのまま成立します。
また、微分の記号も全く同じものを使用します。

★じつのところ、理論として高校数学から直ちに飛びつけない部分は、例えば指数関数や三角関数の場合に「複素数が変数の時にはどういう値をとるのか・・?」という事です。
例えば、cos(2i) などは、ちょっと何の値になるのか(何の値にすべきなのか)分かりませんね。
これについては「複素数の指数関数表示」が大いに関わります。このページでは、個々の関数の定義域の拡張方法についてはとりあえず置いておき、複素関数の微分の全体像について解説します。

テイラー展開・マクローリン展開も同様に可能

初等関数に対して微分が実関数の時と同じ演算で可能という事は、高階微分も同じ計算になるはずで、実際そうなります。そして、初等関数の定義域を複素数に拡張した時も、実関数の時と同様にテイラー展開やマクローリン展開が可能なのです。

例えば、定義域が複素数であっても、三角関数や自然対数の底の指数関数は次のようにマクローリン展開ができます。

$$\sin z=z-\frac{z^3}{3!}+\frac{z^5}{5!}-\cdots$$

$$e^z=1+z+\frac{z^2}{2}+\frac{z^3}{3!}+\cdots$$

※解析学的に、極限の事を厳密に考えていくと実関数との違いは考察として必要になります。その基礎の1つについては後述します。

複素関数論に特有の議論はあるの?

さてこれらの「結論」を見ると、結局複素数の微分というのは定義域を複素数にまで伸ばせばいいだけの話で、数学的にあまり考察する意味はないのでは・・?と、思われるかもしれません。

とりわけ、数学の応用を考える場合はそう思うかもしれませんね。

そこで次に、複素関数の微分において、実関数と違う考察が必要な点を次に述べましょう。これは、複素数の積分のほうを考える時に必要な知識の1つにもなります。

具体的には偏微分を使った考察を行う事になります。実数関数の場合には2変数以上を扱う時に限り偏微分についての考察も必要だったわけですが、複素数を扱う時にはx+yiという形で常に2変数扱うとみなす事もできるので、偏微分も(および全微分も)初歩的な段階から考察対象になるのです。

ただし前述のように、常に2変数と偏微分等を考えないといけないという事ではありません。複素数zを1かたまりとみて1つの変数扱いにできる場合も確かにあるわけです。そこの使い分けが、確かに実数関数の場合と比べて少しトリッキーです。

複素関数の微分の数学的な考え方の詳細

まず微分以前の話として、複素関数というものは実部と虚部という2つの実数部分から、別の複素数の実部と虚部ができるという多変数の関数の一種として考える必要が本来はあります。その考え方をもとに、複素数の微分を改めて捉えてみましょう。

複素関数の実部と虚部はともに2変数関数
複素関数で成立する偏微分の公式(コーシー・リーマンの式)
「正則」という考え方 

複素関数の実部と虚部はともに2変数関数

ある複素数 z = a + bi を2乗するという関数を考えてみると、

$$z^2=(a+bi)^2=a^2-b^2+2abi$$

ここで、結果の式の実部を u、虚部の実数部分を v とすると、u は a と b の関数、v も a と b の関数になります。まず、この考え方が重要です。

つまり、一般の複素関数については次のように考えます。

$$z=x+yi\hspace{3pt}に対して \hspace{3pt}F(z)=u(x,y)+iv(x,y)$$

もとの複素数が変数の時、それが2つの実変数から構成されていて、それらから2つの別の2変数関数が構成されて新しい複素数を作るというわけです。

複素関数
この図で、x と y は変数、u と v は関数(実関数)です。
u, v ともに、x と y による2変数関数 u(x,y) , v(x,y) になります。
z は複素数(変数)、F(z) は「複素関数」です。

多変数関数(ここでは必ず2変数ですが)が出てくるところが、
次に述べる複素関数論での偏微分の使用との大きな関わりがあります。

複素関数で成立する偏微分の公式(コーシー・リーマンの式)

実関数の場合の微分のもともとの考え方は、dy = (dy/dx)dx という、近似の「一次式」を新たに設定する事でした。では、これが複素関数の時はどうなるでしょう?

次のように考えます。

まず、導関数および微分係数も複素数で表されると考える事が重要です。

$$\frac{dF}{dz} =\alpha +i\beta \hspace{10pt}【\alpha と\beta は実数(関数)】$$

$$z = x + iy ,\hspace{5pt} dz = dx + idy, \hspace{5pt} F(z) = u + iv $$

$$dF=\frac{dF}{dz}dz=( \alpha +i\beta ) ( dx + idy) =(\alpha dx -\beta dy)+i(\beta dx + \alpha dy)$$

計算は、複素数の四則演算をしているだけです。実部と虚部に分けます。

次に、

$$F = u +i v = u(x,y) + i v(x,y) に対して dF = du + i dv$$

であるとすると、du と dv は次のようになるわけです:

$$du = \alpha dx -\beta dy,\hspace{10pt} dv =\beta dx + \alpha dy $$

さてここで、dF に対する du と dv は「全微分」でも表せるものとして定義します。(そういうものとして「複素関数の微分」を考えようという事です。)すると、

$$du=\frac{\partial u}{\partial x}dx+\frac {\partial u}{\partial y}dy,\hspace{10pt} dv=\frac{\partial v}{\partial x}dx+\frac {\partial v}{\partial y}dy $$

とも表せるわけです。これを見ると、\(\alpha\) と \(\beta\) は、2通りの方法で表せるはずであり、

$$ \alpha= \frac{\partial u}{\partial x} =\frac {\partial v}{\partial y} ,\hspace{10pt} \beta=-\frac {\partial u}{\partial y} = \frac{\partial v}{\partial x} $$

この偏微分に関する関係が、複素関数の微分における特徴的な性質になります。

複素関数の微分で特徴的な公式

$$ \frac{\partial u}{\partial x} = \frac {\partial v}{\partial y} ,\hspace{10pt} -\frac {\partial u}{\partial y} = \frac{\partial v}{\partial x} $$ この関係式を「コーシー・リーマンの式」と言う事もあります。
名前よりも数学上重要な事は、複素関数が「微分可能」であるとは、
これら2つの偏微分に関する等式がともに成立するという事なのです。(必要十分条件です。)

コーシー・リーマンの関係式の導出
最終的には、図の dx , dy ごとの係数(関数ですが)を比較してコーシー・リーマンの関係式を導出しています。

尚、特に積分のほうで考え方として重要なのですが、どういった「経路」に沿って微積分をするのかという事も複素関数論では考えます。
その経路とは、例えば直線であるとか円であるとかいったもので、z = x + iy において、x と y の関数で表す事ができます。(例えば直線なら y = 2x など。)
そのような場合には、x と y は完全な独立関係にある変数ではなく、従属関係になります
従ってその場合には、媒介変数tを使って x = x(t) , y = y(t) を考える事ができます。そうなると、x と y を変数とする2変数関数 u(x,y) と v(x,y) はもとの変数を tとした合成関数と考える事ができます。
そのように考えると、上記のように複素関数の微分において全微分の考え方を使って定義をする事の意味も多少分かりやすくなるかと思います。

この偏微分に関する「コーシー・リーマンの関係式」は複素関数の積分のほうでむしろ重要になる事があり、例えば複素関数についてのコーシーの積分定理を導出する際に必要になります。

「正則」という考え方

上記の偏微分に関して成立する公式の他に、複素関数の微積分では「正則」という考え方も重要になります。これは、微積分をする対象の関数に1つの条件を課す事であり、基本的に複素関数論はその条件をつけた範囲内で理論を組み立てる事が多いです。

dz = dx + idy を考える時に、じつはある点を基準に考えた時に x と y をどのように動かすのかという問題があります。じつのところ、複素関数論では「どの方向に動かしたとしても」極限が一致する事を「微分可能」であると呼びます。(初等関数の微分ではその要件を満たします。)

$$\lim_{h\to 0}\frac{F(z+h)-F(z)}{h}\left(= \lim_{dz\to 0}\frac{F(z+dz)-F(z)}{dz} \right)$$

によって微分による導関数を定義するのは実関数の時と同じですが、「hの部分も複素数」であるところがじつはポイントであるわけです。

これらの事を踏まえたうえで、「1つの点を含む領域の任意の点」で微分可能な(小さな)領域が存在する時、その複素関数はその点で「正則」であると呼びます。また、複素関数が正則である領域においてはその関数は「正則関数」であると呼ばれます。数学の複素関数論の中では、多くの場合に微積分の対象をこの正則関数に限定する事で理論を組み立てているので、用語としては重要です。

文章の表現としては定義の仕方はいくつかあるのですが、ここではその1つを記します:

複素関数論での「正則関数」の定義
  • ある複素関数 F(z) と、ある点 z = z0 について、z0 を含むある領域で、「その領域内の任意の点で微分可能であるような」ものが存在する時、F(z) は点 z0 において正則であると呼ぶ。
  • ある領域の任意の点で F(z) が正則である時、その領域内で F(z) は「正則である」あるいは「正則関数である」などと言う。

参考文献・参考資料


基礎系 数学 複素関数論I (東京大学工学教程)

変分の計算

物理の理論では、微分とは少し意味合いが異なる変分という計算が行われる事があります。

変分とは?例①:光の屈折

汎関数という考え方 ■ 2点間を進むための最小時間と光の屈折 ■ 変分の記号と計算 

汎関数という考え方

ある関数 y = F(x) があった時、それをグラフに描いたとして、グラフの「弧長」sを決定する事ができます。この弧長sは、もちろん関数によって異なります。2端点が決まっている場合、 y = F(x) が どのような関数であるかに依存してsが決まるわけで、s=s(y) という関数であると考える事もできるわけです。このようなタイプの関数を汎関数と言います。

関数は通常F(x) などのように書きますが、汎関数である事を強調する場合には F[y] のように書かれる場合もあります。

2点間を進むための最小時間と光の屈折

通常の空間(ユークリッド空間)で2点を結ぶ最短距離は、2点間を結ぶ直線の距離です。同じ速さの物体を考える時にも、2点間を進むときの最短の時間となるのは直線軌道を通る時です。

しかし、領域によって速さが変わってしまう場合などは、じつは最短の時間となるのは直線軌道ではなく、折れ曲がったような経路になってしまいます。

どのような折れ線になるのかという問題自体は、普通の微分法で解く事ができます。ただし直交座標の平面を設定して軌道を関数と捉えた場合は関数形が変化して最短距離が決定すると見なせる事が重要で、それが変分の基本的な考え方であるというわけです。

光の屈折は、この問題の結果として表されると考えられています。
【※相対性理論で光線の軌道が曲がるという考え方は、これとはまた少し違った理論なので注意。】

変分の記号と計算

変分を表す時には、δ(デルタ)という記号を使います。これは、微分を表すためにdという記号を使うのと区別する意味があります。

ある汎関数I[y] があった時、 その変分 δ I[y] は、
δ I[y] = I[y+δy]-I[y] で表されます。
(この定義の仕方で考えられた変分を、特に「第1変分」とも言います。)
δy は様々な形の任意の(微小な)関数です。

変分の定義(「第1変分」)

汎関数 \(I[y]\) に対して $$δ I[y] = I[y+δy]-I[y]$$ \(\delta y\) は様々な形の任意の(微小な)関数。

変分の定義から、例えば2つの汎関数の和ついては
δ( I[y]+J[y] ) = ( I[y+δy]+J[y+δy] ) - ( I[y]+J[y] )= I[y+δy]-I[y] + ( J[y+δy]-J[y] )=δI+δJ
が成立します。差についても同様です。

これらの定義や考え方は、もともとの意味での「微分」がdF(x)=F(x+dx)-F(x) で表される事と似ています。

ただし、微分の場合のdxが(小さい)実数であるのに対して、変分の場合の δy は様々な形の任意の(微小な)関数であり、yと全然違う形の関数も含めて考えているという点が異なります。その意味で、変分と微分は違うものである事は強調されるのです。

一度計算を始めて変化させる関数yを通常の実変数として動かすとみなしてよい状態に持ち込んだ時には微分計算と同じ事ができるという特徴があります。ただし、通常の1変数の微分ではなく、基本的には多変数関数の偏微分を含んだ全微分の計算になる点に注意する必要があります。

例②:解析力学 定積分に対する変分計算

問題の設定 ■ 計算の詳細 ■ オイラー・ラグランジュ方程式 

問題の設定

汎関数 I[y] が、次の形

$$I[y]=\int_a^bF(x,y,y^{\prime})dx$$

$$条件:端点 x=a, x=b でyについての変分\delta y=0$$

で表される場合を考えます。y は x の関数であるとします。

積分などがあるといかにも話が複雑になりそうですが、じつは「部分積分」を使って式を簡単にするなど、計算上の利点も一部存在します。

このとき、I[y]の変分 δI[y] は次のように計算します。

計算の詳細

まず定義に従って、 \( δ I[y] = I[y+δy]-I[y]\) ですが、この先がまず第一のポイントで、積分の中身の \(F( x,y,y^{\prime}) )\) については、xは動かさずに、yだけ変化すると考えます。さらに、この時にyの導関数は 「δy に対する導関数」の分だけ増減、つまり (δy)’ だけ増減します。

$$ δ I[y] = I[y+δy]-I[y] = \int_a^b F(x,y+\delta y,y^{\prime}+\delta y^{\prime} ) -F(x,y,y^{\prime})dx $$

続いて、yを通常の実数変数同様に扱えると考えて、積分の中身を全微分と同様に扱えるとみなします。この場合、xは動かしていませんのでdxに相当する項は0になります。

$$ F(x,y+\delta y,y^{\prime}+(\delta y)^{\prime} ) -F(x,y,y^{\prime}) =\delta y \frac{\partial F}{\partial y}+ (\delta y)^{\prime} \frac {\partial F}{\partial y ^{\prime} } $$

$$ δ I[y] = \int_a^b \delta y\frac{\partial F}{\partial y}+ (\delta y)^{\prime} \frac {\partial F}{\partial y ^{\prime} } dx= \int_a^b \delta y \frac{\partial F}{\partial y}dx + \int_a^b (\delta y)^{\prime} \frac {\partial F}{\partial y ^{\prime} } dx $$

次に、yの導関数に対する変分の項について、xに関して部分積分を行います。

$$(\delta y)’ =\frac{d}{dx}(\delta y)$$ 

の箇所に対して部分積分を適用するという事です。
【このような事ができるのはδyが「関数」であるからという事には一応注意。】

$$2番目の項について: \int_a^b (\delta y)^{\prime} \frac{\partial F}{\partial y ^{\prime} } dx =\left[ \delta y \frac{\partial F}{\partial y ^{\prime} } \right]_a^b- \int_a^b \delta y \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} } dx =\hspace{5pt} – \int_a^b \delta y \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} } dx $$

$$ 【∵\hspace{5pt}x=a,x=b で\delta y=0 という前提条件】$$

端点でδyが0になるという条件をつけているので部分積分した後の第1項は0になって消えます。この条件は、要するに端点は固定して関数形を変化させるという意味です。

これにより、δIを改めて書くと次のようになります。

$$\delta I = \int_a^b \delta y \frac{\partial F}{\partial y}dx – \int_a^b \delta y \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} } dx $$

$$= \int_a^b \delta y\left(\frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} }\right) dx $$

さて、物理で使う場合は「ここまで変形できればじゅうぶん」という考え方をします。

オイラー・ラグランジュ方程式

上記の条件での汎関数 I[y] に対する変分 δI[y] が0になる条件を考えると、積分の中身の

$$ \frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime}} $$

という部分が0であればよい事が分かります。(δyは「任意の」(微小な)関数である事に少し注意。)

そこで、

$$ \frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime}} =0$$

という形の微分方程式が成立すればよいという事ですが、これは解析力学では座標系によらずこの形で使用できる運動方程式の形として知られていて、少し長ったらしい名称ですが「オイラー・ラグランジュ方程式」あるいは「オイラーの微分方程式」などとも呼ばれます。

通常のF=ma の形の運動方程式はシンプルな形ではありますが、じつは直線直交座標を特別扱いしていて、座標系を例えば極座標に変換しただけで結構面倒で汚い形にと変わってしまいます。

これに対して上記の形の運動方程式は任意の座標系に対してこの形のまま話を進められるという事で、理論的な扱いとしては便利である場合があります。

例③:相対性理論、リーマン幾何学

一般相対性理論、リーマン幾何学で変分を使う例もあります。

1つの例は「測地線」という、曲面上の2点を「曲面に沿って最短経路で」結ぶ曲線に対して成立する式の導出です。この場合、弧長に相当する次の形の汎関数を考えます。

$$ \int_a^b \sqrt{\sum_{i,j=0}^3g_{ij}\frac{dx_i}{dr}\frac{dx_j}{dr}}dr $$

これを直接変分して計算を進めたものを0とおくか、
あるいは積分の中身の関数を上記で得られた微分方程式

$$ \frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime}} =0$$

に代入して計算を進めるかで、結論の式を得ます。どちらの場合も、最初一般の媒介変数rで計算しておいて、途中でrがsに比例するかr=sとおいて式を簡単にする工夫が行われます。

偏微分の応用の例:位置エネルギーと保存力の関係

合成関数に関する偏微分の公式の物理での使用例を、ここでは1つ述べます。

★ このページではベクトル解析で使用する「勾配」という考え方を使用します。
これは、多変数関数(多変数のスカラー関数)に対する偏微分によって表されるものです。

参考(サイト内リンク):接線線積分の定義と考え方

保存力の力ベクトルは、位置エネルギーの勾配ベクトルで表せる

先に結論の式を書きますと、力が「保存力」である場合に、位置エネルギーのxでの偏微分をx成分、yでの偏微分をy成分、zでの偏微分をz成分に持つベクトルは、保存力の力ベクトルに等しいという関係式があります。【※保存力で無い場合は成立しませんので注意。】

保存力の力ベクトルは、位置エネルギーの勾配ベクトルで表せる

まず、「位置エネルギー」(あるいはポテンシャルエネルギー)U(x,y,z) を次のように定義します。これはベクトルでは無く、スカラー関数です。 $$\large U(x,y,z)=-\int_{\overrightarrow{R_O}}^{\overrightarrow{R}}\overrightarrow{F}(x,y,z)\cdot d\overrightarrow{r}$$ $$\large \mathrm{grad} U(x,y,z)=\left(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y},\frac{\partial U}{\partial z}\right)$$ 力ベクトル F(x,y,z) が保存力である場合、次式が成立します:$$\large -\mathrm{grad} U(x,y,z)=\overrightarrow{F}(x,y,z) $$

★ プラスマイナスの符号の関係が、ちょっとごちゃごちゃするので注意。

「勾配」grad (または∇「ナブラ」)については、詳しくはベクトル解析という分野で説明されます。

この関係式は、古典力学の理論としては仕事とエネルギーの関係の話の延長線上にあります。

これは要するに数学的には、
接線線積分の形の多変数関数の勾配ベクトルは、もとのベクトル関数と同じ形になる」
という事を言っています。通常の不定積分(あるいは積分区間に変数が入った定積分)は、通常の微分を考える事で元の関数に戻るという「微積分学の基本定理」がありました。それと似た形の式という事になります。

この関係式の証明のポイントは、合成関数の偏微分公式です。
ベクトルの内積の計算も直接的に関わります。

\(-\mathrm{gradU(x,y,z)}= \overrightarrow{F}(x,y,z)\) の証明

まず通常の微積分学の基本定理を用いたうえで、ベクトルの内積と合成関数の偏微分の公式をうまくかみ合わせます。

位置座標は全て「物体の位置」であるとして、位置座標に対応する時間成分tを考えます。
力ベクトルの成分についても同様に tの関数であると考えます。

$$\large \overrightarrow{F}(t)=(F_X(t),F_Y(t),F_Z(t))$$

$$\large 点\overrightarrow{R} での時刻をt、点\overrightarrow{R_O} での時刻を t_O とします。$$

最初のステップ $$\large -U(x,y,z)=\int_{ \overrightarrow{R_O}}^{\overrightarrow{R}} \overrightarrow {F} (x,y,z) \cdot d\overrightarrow{r}=\int_{t_O}^{t} \overrightarrow {F} (\tau) \cdot \frac{d \overrightarrow{r} }{d\tau}d\tau$$ $$\large =\int_{t_O}^{t}F_X(\tau) \frac{dx}{d\tau} d \tau + \int_{t_O}^{t}F_Y(\tau) \frac{dy}{d \tau } d \tau + \int_{t_O}^{t} F_Z(\tau) \frac{dz}{d \tau } d \tau $$ $$★ 時間についての積分変数の表記はt → \tau (タウ)に変えています。$$

Uの定義(力学での定義です)にマイナス符号があるので、
ここでは最初から「-U」を考えて、積分での表記をプラス符号で考えています。

★ 後述しますが、力が「保存力」であるという条件がないと、じつはまずこの式変形ができません。なぜかというと一般の接線線積分は、2つの端点だけでなく、その2点を結ぶ経路によって値が変わってしまうからです。力が保存力であるという条件は、この値が経路によらず一定の値であるとしてよいという条件です。

★ 古典力学の理論の中では、もともとは一般の力に対して時間で表したほうの式が先にあって、次に「保存力」という位置座標のみで決定するものを考えます。

★ 積分区間にベクトルが入っている部分は、次の意味になります。 $$\large \int_{ \overrightarrow{R_O} }^{\overrightarrow{R}} \overrightarrow {F} (x,y,z) \cdot{d\overrightarrow{r}} $$ $$\large =\int_{x_O}^{x}F_X(x,y,z)dx+ \int_{y_O}^{y}F_Y(x,y,z)dy+ \int_{z_O}^{z}F_Z(x,y,z)dz $$ $$\large \overrightarrow {F}=(F_X,F_Y,F_Z),\hspace{10pt}\overrightarrow{R_O}=(x_O,y_O,z_O),\hspace{10pt}\overrightarrow{R}=(x,y,z)$$ dx の部分は x に関してだけ積分し、yやzは定数同様に扱います。つまり、偏微分と同じような考え方をするわけです。この場合の微積分学の基本定理は、積分と「偏微分」との関係になります。

次に、時間成分tで U(x,y,z) = U(x(t), y(t), z(t)) を微分します。
内積計算で3つの項の和にした部分は共通の積分変数tでの積分になっているので、通常の微積分学の基本定理がそのまま使えます。

この時、積分する対象として $$\large F_X(t) \frac{dx}{dt}$$ を1つの関数と捉える事がポイントです。
積分中の表記では$$\large {F_X( \tau ) \frac{dx}{d\tau}}$$ にしています。

成立する式:その①

$$\large\frac{dU}{dt}= \frac{d}{dt}\left(\int_{t_O}^{t}F_X( \tau ) \frac{dx}{d\tau} d \tau + \int_{t_O}^{t}F_Y( \tau ) \frac{dy}{d \tau } d \tau + \int_{t_O}^{t} F_Z( \tau ) \frac{dz}{d \tau } d \tau \right)$$

$$\large = F_X(t) \frac{dx}{dt} + F_Y(t) \frac{dy}{dt} + F_Z(t) \frac{dz}{dt}=\overrightarrow{F}(x,y,z)\cdot \frac{ d\overrightarrow {R}}{dt} $$

他方で、合成関数の偏微分公式を使うと U の時間微分の計算を別途に表現できるのです。
この場合、多変数 x、y、z が1つだけの変数tの合成関数になっているという事なので、表記としては$$\large \frac{\partial U}{\partial t}=\frac{dU}{dt}です。$$

ただし、もとの関数が U(x,y,z) という多変数関数なので、偏微分のほうの合成関数の微分公式を使う点に注意しましょう。

成立する式:その②

$$\large \frac{\partial U}{\partial t}=\frac{dU}{dt}= \frac{\partial U}{\partial x} \frac{\partial x}{\partial t}+ \frac{\partial U}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial U}{\partial z} \frac{\partial z}{\partial t} $$ $$\large = \frac{\partial U}{\partial x} \frac{dx}{dt}+ \frac{\partial U}{\partial y} \frac{dy}{dt} + \frac{\partial U}{\partial z} \frac{dz}{dt} =(\mathrm{gradU})\cdot \left( \frac{ d\overrightarrow {R}}{dt}\right) $$

最後の結果は「Uの勾配ベクトル」と「速度ベクトル」との内積です。
内積はスカラーであり、勾配はスカラー関数をベクトルの関数変換する演算である事を意識すると分かりやすいと思います。

同じものを2通りの数式で表せる事になるので、等号で結ぶ事ができます。
これによって、次の関係式が成立する事になります。

$$\large – \overrightarrow{F}(x,y,z)\cdot \frac{ d\overrightarrow {R}}{dt} = \mathrm{gradU}\cdot \frac{ d\overrightarrow {R}}{dt} $$

$$これは、\overrightarrow{A}\cdot \overrightarrow {C} = \overrightarrow{B}\cdot \overrightarrow {C} という関係になっています。 $$

これが証明の根拠になるわけですが、数学的には
\(\overrightarrow{A}\cdot \overrightarrow {C} = \overrightarrow{B}\cdot \overrightarrow {C} \) から直ちに\(\overrightarrow{A}= \overrightarrow{B}\) とは言えない事には注意しましょう。
そうならない場合もあるのです。
しかし、この場合は \(\overrightarrow {R}\) が特定の座標点では無くて「任意の座標点」です
特定の点だけではなく、どんな座標の点を考えたとしてもこの関係式は成り立つ、という意味です。
ですから、\(\overrightarrow {R}\) に対して内積をとると等しい値になる2つのベクトル\(– \overrightarrow{F}(x,y,z)と\mathrm{gradU(x,y,z)}\) は、全く同じ関数でなければならないのです。

$$ つまり 、- \overrightarrow{F}(x,y,z)\cdot \frac{ d\overrightarrow {R}}{dt} = \mathrm{gradU}\cdot \frac{ d\overrightarrow {R}}{dt} かつ 「\overrightarrow {R} は任意の(実)ベクトル」なので、$$

$$-\overrightarrow{F}(x,y,z)=\mathrm{gradU}(x,y,z)\Leftrightarrow -\mathrm{gradU}(x,y,z)= \overrightarrow{F}(x,y,z) という事です。【証明終り】$$

「保存力」の物理的な意味

保存力とは力がなす仕事が経路に依存せず、始点と終点の位置だけに依存する力を言います。これは結構強い条件が課されている事になりますが、万有引力、重力(地表面での万有引力を近似したもの)、ばねの力、クーロン力などは保存力になるので、物理の理論の中では結構使い物になります。

逆に、保存力でない力の簡単な例は摩擦力などです。

一般の力ベクトルに対しては、少しだけ上述でも触れましたが、
次の形の時間変数による積分が先にあります。

$$\large T(t)-T(t_O)=\int_{t_O}^{t} \overrightarrow {F} (\tau) \cdot \frac{d \overrightarrow{r} }{d\tau}d\tau$$

ここで、1変数の通常の積分であれば積分変数をtからxに変換できます。

しかし、この場合は「接線線積分」なので、経路は1通りでは無く様々なものがあるのです。

経路によって値が異なりますから、同じ値の定積分になるという意味での積分変数の変換は無条件にはできない・・という事です。

ベクトルに対する一般の接線線積分の場合、値が始点と終点だけでは決定しないので次のように表記します:

$$一般の接線線積分の表記:\int_C \overrightarrow {F} \cdot d \overrightarrow {r}\hspace{10pt}Cは特定の関数で表される経路 $$

ここで、経路によらず「経路の始点と終点だけをしていれば値が定まる」という条件をつけると、もちろん数学的な扱いは簡単になります。
そのような条件がつけられた種類の力が保存力であり、上記のように具体的に当てはまる力も存在するというわけです。

保存力がなす仕事の値(仕事量)は始点と終点の位置だけで決まります。これを「位置エネルギー」あるいは「ポテンシャルエネルギー」などと呼びます。
これは運動エネルギーに対する用語です。位置エネルギーと運動エネルギーの合計を、力学的エネルギーと呼びます。
尚、保存力ではない摩擦力などの力に対しては、位置エネルギーは考えないのです。

これを数学的に取り扱った場合、上述いたしましたように、合成関数に対する偏微分の公式などが重要な役割を担っているというわけです。

ベクトル解析と勾配・回転・発散・・grad, rot, div

このページでは、電磁気学などで使われる「ベクトル解析」という数学の分野について説明します。
その中でも特に、勾配・発散・回転と呼ばれるものについての説明を行います。

これは「ベクトルの微積分・力学での応用」の延長線上にある理論です。純粋数学よりも、応用数学の色彩の濃い微積分学の分野になります。(もちろん、純粋数学的・解析学的に考察する事も可能です。)

スカラー関数の変数が特に位置座標である事を強調する場合には「スカラー場」と言う事もあります。このページではスカラー場という名称を使います。

はじめに:「場」という考え方とベクトル解析

勾配(grad)、発散(div)、回転(rot)は「スカラー場」や「ベクトル場」というものに対して考えます。それらはいずれもスカラーやベクトルの仲間なのですが、特にどのようなスカラーやベクトルをそのように呼ぶのかを最初に述べておきます。

ベクトル場
スカラー場
電磁気学でのベクトル場とスカラー場の例 

ベクトル場

てきとうな電荷があって、まわりに別の電荷を持ってくると、電荷同士に力が働きます。この時に、後から持ってきたほうの電荷を置く場所によって働く力が変わってきます。これは数式で表すと、電荷が受ける力が座標上の点ごとに異なると考える事もできて、力を座標変数の関数で表されたベクトルで表せます。このように表されるベクトルを、「ベクトル場」と呼びます。ベクトル場の各成分は、座標成分による多変数関数になっています。(必要に応じて時間変化もするとして時間成分も加えます。)

このようなベクトル場の微積分を扱う数学の分野をベクトル解析と呼んだりします。後述するスカラー場の微積分も合わせて考えます(スカラーをベクトルに変換する操作などが含まれます) 。

★ ベクトル場の事を「ベクトル界」と言う事もあります。ベクトル界という呼び方は工学系で使われる事が多いとも言われます。
どちらが正しいかの基準はありませんが、このサイトでは、「ベクトル場」の呼び方を使用します。
「場(field)」という語は、「遠隔力」という考え方に対する概念として物理学で単独でも使う事があります。他方、『界』という語は単独では普通は使わない事が多いので、用語としては「場」という語でこのサイトでは統一します。

「ベクトル場」の意味

x, y, z の直交座標上で、
次のように各成分が x, y, z の関数として表される空間ベクトルを「ベクトル場」と呼びます: $$\overrightarrow {F}(x,y,z)=(\hspace{3pt}F_1(x,y,z),F_2(x,y,z),F_3(x,y,z)\hspace{3pt})$$ $$ベクトルの各成分\hspace{3pt}F_1(x,y,z)などは、x,y,z の多変数関数(スカラー関数)$$ 平面ベクトルで考えたとしても、成分が1つ減るだけで同様にベクトル場を考える事ができます。4成分以上の場合も理論的には考える事は可能ですが、普通はあまり考えません。ここでは基本的に3成分の空間ベクトルのベクトル場を考えます。

ベクトル場自体は多変数関数を成分とする「ベクトル」とも言えるので、上記の形が「ベクトル場の『定義』」であるというよりは、ベクトルのうち「このような形で表されるものを特にベクトル場と呼ぶ」という感じだと言えます。

物体の軌道をベクトルで表す時に、物体の位置座標を「時間の関数」として表す方法があったわけですが、それとの違いは、成分となる関数の変数に「座標成分が含まれている」という事です。

$$\overrightarrow {X}(t)=(x(t),y(t),z(t)) といったベクトルとは少し区別されるのです。$$

2つの電荷プラス同士であれば反発し、プラスとマイナスであれば引き合います。
向きは2つの電荷を結ぶ直線に沿い、遠くに離れるほど力の大きさは弱くなります。
「電荷に働く力を「場」として見る場合は「電場」と呼びます。

スカラー場

もう1つ、ベクトル解析では「スカラー場」というものも考えて、ベクトル場との使い分けを上手に行う事が理解のポイントになっていきます。

スカラー場とは、数式的には座標成分 x, y, z を変数とする多変数関数の事です。意味としては何ら難しくないのですが、電磁気学等の理論ではベクトル場と入り乱れる形で使われるので、物理の理論の中では慣れないと少し難しく感じると思います。

「スカラー場」の意味

x, y, z の直交座標上で、
次のように x, y, z の関数として表される多変数関数を「スカラー場」と呼びます: $$\phi= \phi (x,y,z)$$ 記号はここでは「\(\phi\)ファイ」を用いていますが、別に何でも構いません。 これは数学的に見れば通常の多変数関数であって、これをスカラー場と呼ぶのは基本的には x, y, z が空間上の直交座標の成分である事が明確であって物理等で用いられる場合、特にベクトル場と区別する場合です。

電磁気学でのベクトル場とスカラー場の例

+1[C] の電荷をある場所に置いたときに、その電荷が受ける力ベクトルを位置座標の関数で表したものはベクトル場であり、特に電場と呼びます。電気だけでなく磁気についても同じ考え方ができます。磁気の場合は単独の「磁荷」は存在しないと言われていますが、仮想的に単独の「磁荷」を考えて、磁荷が受ける力のベクトル場の事を磁場と呼びます。

電磁気学では、これを総称して電磁場と呼んだりもします。磁場は電流によって作られ、電流を生じさせる電圧(起電力)は磁場の変化によって作られるという関係が知られています。電磁気学は、観測によって得られたそれらの関係を定量的に表せるように数式で整理する物理学の分野です。

ベクトル場の具体例として、+1[C] の電荷のまわりの電場は次のように表せます(その付近に、別の+1[C] の電荷を持ってくると考えます。k は比例定数です。 ):

$$\overrightarrow {E}(x,y,z)=\left(\frac{kx}{r^3}, \frac{ky}{r^3}, \frac{kz}{r^3} \right)= \left (\frac{kx}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{ky}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{kz}{(x^2+y^2+z^2)^{\frac{3}{2}}} \right )$$

$$r= \sqrt{x^2+y^2+z^2} = (x^2+y^2+z^2)^{\frac{1}{2}}の関係で処理しています。 \frac{kx}{r^3} =\frac{k}{r^2}\cdot \frac{x}{r}という事です。 $$

$$詳細は別途に記しますが、ここでの電場の「大きさ」は| \overrightarrow {E} |=\frac{k}{r^2}になります。$$

ただし、このように具体的な座標成分で記すと計算が面倒なので、大枠となる理論ではベクトル場という事だけ踏まえて数式的な処理を加えていく事が行われます。個々の具体的な事例の考察では具体的な関数にして考えたりします。

このようなベクトル場である電場に対して、ある位置での+1[C]の電荷が持つ事になる位置エネルギー(または「ポテンシャル」)を電位と言います。これは日常でもよく耳にすると思われる電圧と本質的には同じものです。電位は、ベクトルでは無く、スカラー場になります。つまり、x, y, z という3つの変数によって決まる1つの値が決まるという3変数関数になります。

$$「電位」V(x,y,z) はべクトル場ではなく、スカラー場です。$$

これらのベクトル場やスカラー場の微積分を考えられる時に使われるのが、次に記す「勾配」「発散」「回転」というものです。

ベクトル場の発散(div)と回転(rot)、スカラー場の勾配(grad)

ではここで、ベクトル解析で重要な 勾配、発散、回転 と呼ばれるものの説明をします。

div, rot, grad ・・定義と考え方
図形的にはどのような意味を持つ?

※ここでの「発散」は、「無限大に発散」という意味ではなく、また別のものです。少々分かりにくいかもしれませんが、同じ用語を使う習慣があります。
※「回転」は「循環」と呼ばれる場合もあります。

勾配、発散、回転の定義には偏微分を用います。
ベクトル場、スカラー場ともに多変数関数である事が直接的に関わっています。

div, rot, grad ・・定義と考え方

あるベクトル場 \(\overrightarrow {F}\) があったとき、それに対する発散、回転を考える事になります。(成分が x, y, z の関数になっていない通常の「ベクトル」に対しては基本的に考えないので注意。)

他方、勾配についてはスカラー場に対して定義します。

$$ベクトル場\overrightarrow {F}(x,y,z)に対して、発散:\mathrm{div} \overrightarrow {F},\hspace{10pt} 回転:\mathrm{rot} \overrightarrow {F},\hspace{10pt} を定義します。$$

$$また、スカラー場\phi (x,y,z)に対して、 勾配:\mathrm{grad} \phi ,\hspace{10pt} を定義します。$$

定義
勾配(gradient)【グレディエント】
  • スカラー場 \(\phi (x,y,z)\)に対して次のベクトル(関数)を勾配(勾配ベクトル)と呼びます。
    $$\mathrm{grad} \phi=\left(\frac{\partial \phi}{\partial x},\frac{\partial \phi}{\partial y},\frac{\partial \phi}{\partial z}\right)$$
  • \(\mathrm{grad}\phiの代わりに\nabla \phi とも書きます。\)
発散(divergence)【ダイヴァージェンス】
  • ベクトル場 \(\overrightarrow {F}(x,y,z)=(F_1,F_2,F_3)\) に対する次のスカラー(関数)を発散と呼びます。
    $$\mathrm{div} \overrightarrow {F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}$$
  • \(\mathrm{div}\overrightarrow {A}の代わりに\nabla \cdot \overrightarrow {A} とも書きます。\)
    \((F_1,F_2,F_3)=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z))\) です。
回転(rotation,curl)【ローテイション、カール】
  • ベクトル場 \(\overrightarrow {F}(x,y,z)=(F_1,F_2,F_3)\) に対する次のベクトル(関数)を回転と呼びます。$$\mathrm{rot} \overrightarrow {A}=\left(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right)$$
  • \(\mathrm{rot}\overrightarrow {A}の代わりに\mathrm{curl}\overrightarrow {A}、あるいは\nabla × \overrightarrow {A} とも書きます。\)

★ 見ての通り、いずれも偏微分を用いて定義されます。
偏微分とは、1つの変数だけに着目し、他の変数は定数扱いにして微分操作を行う演算です。
★ \(\nabla \cdot \overrightarrow {A},\nabla × \overrightarrow {A}\) という表記について:これらの定義による式の形が、ベクトルの内積や外積の計算規則と似ている事からそのようにも書く習慣があります。この逆三角形の記号∇は「ナブラ」と呼ばれます。
★ 勾配・発散・回転自体も x, y, z を変数とするベクトルや実関数ですからベクトル場とスカラー場という事になりますが、勾配・発散・回転自体に対してはあまり「場」とは言わない事が多いです。

このように定義した時、
勾配と回転はベクトルであり、発散はスカラーである事に、少し注意してみてください。

同時に、勾配を考える対象はスカラー場であり、
発散と回転を考える対象はベクトル場であるわけです。少し整理しましょう。

対象の関数 勾配・発散・回転 ベクトル・スカラーの区別
スカラー場\(\phi (x,y,z)\) \(\mathrm{grad}\phi \) 勾配:ベクトル(成分は関数)
ベクトル場 \(\overrightarrow {F}(x,y,z)\) \(\mathrm{div}\overrightarrow {F}\) 発散:スカラー(関数)
ベクトル場 \(\overrightarrow {F}(x,y,z)\) \(\mathrm{rot}\overrightarrow {F}\) 回転:ベクトル(成分は関数)

★ 尚、発散と回転については、上記で定義した数式を「積分した形」を発散および回転と呼ぶ場合もありますが、このサイトでは一貫して上記の形の定義を用いる事にします。

図形的にはどのような意味を持つ?

こういった色々見慣れない記号をなぜ考えるのか?という話にもなるかと思いますが、これらに関しては基本的に「3次元の空間」の中のベクトルの理論ですので、図形的を持っている事が理解の1つのポイントです。

まず勾配については、偏微分を考えている事に注目すると、あるスカラー場が x方向、y方向、z方向に対して、その向きだけの変化率をベクトルで表したものになります。

次に、ベクトル場の発散についてです。これは位置が微小変化した時に、特定の量が全体として「周りからどれだけ出入りするか」の変化率を表します。単位体積から出入りする流量(※1)を表すとも言えます。
ベクトル場の発散に体積要素(dv = dxdydz)を掛け算すると、微小な領域に出入りする流量を表します。発散を面積分と重積分(※2) を結びつける公式(発散定理、ガウスの定理)もあり、それも物理で重要です。

(※1)もう少し詳しく言いますと、電磁気学の理論の一部は、流体力学の理論とのアナロジー(類似性)から類推して組み立てられています。「流量」とは流体力学で使われる用語であり、ある断面を1秒間あたりに通過する流体の体積を表します。
(※2)この場合、dv = dxdydz を考えるので体積積分とも言います)

回転については、定義式からは少し分かり辛いと思いますが、じつはこれを積分(「法線面積分」という種類の積分)をした時に文字通りの意味を表します。公式(「ストークスの定理」)を用いる事で、あるベクトル場の回転の面積分は、そのベクトル場に対して閉曲線を1周するように接線線積分したものに等しくなるのです。ベクトル場の回転は流体力学では「渦」を表現するのに使い、電磁気学などの領域でも使用します。

これらの図形的な意味を捉える時は、積分を考える必要がある場合もあります。

勾配・発散・回転に関するいくつかの公式

最後に、いくつかの公式について紹介をしておきましょう。

勾配・発散・回転の公式①:色々な組み合わせによる関係式
勾配・発散・回転の公式②:積分を含む公式 

勾配・発散・回転の公式①:色々な組み合わせによる関係式

ベクトル場の勾配・発散・回転を使ってどういう理論が展開されるのかを軽く見るために、いくつかの公式を挙げてみます。これらは、一般的には暗記するほど重要ではないと思いますが、簡単なものや特徴的なものは知っておくと物理学全般を学ぶ時に便利です。

勾配・発散・回転のいくつかの公式

\(\phi\) などはスカラー場、\(\overrightarrow {F}\) などはベクトル場であるとします。

  1. \(\mathrm{grad}(\phi_1\phi_2)=\phi_1(\mathrm{grad}\phi_2)+\phi_2(\mathrm{grad}\phi_1)\)
  2. \(\mathrm{div}(\phi\overrightarrow {F})=\mathrm{div}(\overrightarrow {F}\cdot \mathrm{grad}\phi)+\phi\mathrm{div}\overrightarrow {F}\)
  3. \(\mathrm{rot}(\mathrm{grad}\phi)=0\)
  4. \(\mathrm{div}(\mathrm{rot}\overrightarrow {F})=0\)
  5. \(\mathrm{rot}(\mathrm{rot}\overrightarrow {F})=\mathrm{grad}(\mathrm{div}\overrightarrow {F})-\left(\frac{\partial ^2F_1}{\partial x^2}+\frac{\partial^2 F_2}{\partial y^2}+\frac{\partial^2 F_3}{\partial z^2}\right)\)

\(\phi_1\phi_2\) は2つのスカラー場の積(普通の掛け算)であり、\(\phi\overrightarrow {F}\) はベクトル場の各成分に(同一の)スカラー場を掛け算したものです。\(\overrightarrow {F}\cdot \mathrm{grad}\phi\) は、内積です。
電磁気学の理論では、3番目と4番目の関係は特に重要です。
5番目の形の式は、回転はベクトル場から別のベクトル(場)を作る操作であるために考える事ができる点に注意。(勾配や発散では同じような事はできません。)

これらの公式の証明は、基本的には定義に直接当てはめて、積の微分公式などの基本公式を使って丁寧に計算する事で得られます。例えば、1番目の公式は各成分ごとに積の微分公式を使うだけです。
(偏微分の場合も通常の微分の場合と同じ形の積の微分公式が成立します。)

$$\mathrm{grad}(\phi_1\phi_2)=\left(\frac{\partial (\phi_1\phi_2) }{\partial x},\frac{\partial (\phi_1\phi_2) }{\partial y},\frac{\partial \ (\phi_1\phi_2) }{\partial z}\right)$$

$$= \left( \phi_1 \frac{\partial \phi_2}{\partial x}+ \phi_2 \frac{\partial \phi_1}{\partial x} , \phi_1 \frac{\partial \phi_2}{\partial y}+ \phi_2 \frac{\partial \phi_1 }{\partial y} , \phi_1 \frac{\partial \phi_2 }{\partial z}+ \phi_2 \frac{\partial \phi_1 }{\partial z} \right) $$

$$= \left( \phi_1 \frac{\partial \phi_2}{\partial x} , \phi_1 \frac{\partial \phi_2}{\partial y} , \phi_1 \frac{\partial \phi_2 }{\partial z}\right) + \left(\phi_2 \frac{\partial \phi_1}{\partial x} , \phi_2 \frac{\partial \phi_1 }{\partial y}, \phi_2 \frac{\partial \phi_1 }{\partial z} \right) $$

$$=\phi_1(\mathrm{grad}\phi_2)+\phi_2(\mathrm{grad}\phi_1)【1番目の公式の証明終り】$$

2番目の公式も、積の微分公式を用いるだけです。

$$\mathrm{div}(\phi\overrightarrow {F})=\frac{\partial (\phi F_1)}{\partial x}+\frac{\partial (\phi F_2)}{\partial y}+\frac{\partial (\phi F_3)}{\partial z} $$

$$ = \left( \phi \frac{\partial F_1}{\partial x}+ F_1 \frac{\partial \phi }{\partial x} \right) + \left( \phi \frac{\partial F_2}{\partial y}+ F_2 \frac{\partial \phi }{\partial y} \right) + \left( \phi \frac{\partial F_3}{\partial z} +F_3 \frac{\partial \phi }{\partial z} \right) $$

$$ = \phi \left( \frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+ \frac{\partial F_3}{\partial z}\right) + F_1 \frac{\partial \phi }{\partial x} + F_2 \frac{\partial \phi }{\partial y} + F_3 \frac{\partial \phi }{\partial z} $$

$$= \phi \mathrm{div} \overrightarrow {F}+ \overrightarrow {F} \cdot \mathrm{grad}\phi 【2番目の公式の証明終り】 $$

3番目と4番目の式は、2つの変数で続けて偏微分を行う時には偏微分の順番は関係なく同じ結果になる(※)という事を使って示します。【※解析学的に厳密に言うと条件がありますが、通常の連続関数であれば基本的に問題ありません。】

3成分のそれぞれについて0になる事を示す必要がありますが、変数が入れ替わるだけで同じ形・同じ計算ですので、第1成分(x成分)についてのみ記します。

$$\mathrm{rot}(\mathrm{grad}\phi)の第1成分=\frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial z}\right)- \frac{\partial}{\partial z} \left (\frac{\partial \phi}{\partial y} \right) = \frac{\partial^2 \phi}{\partial z \partial y }- \frac{\partial^2 \phi}{\partial y \partial z }=0 $$

$$【3番目の公式(第1成分)証明終り】 $$

$$\mathrm{div}(\mathrm{rot}\overrightarrow {F})の第1成分= \mathrm{div} \left(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z},
\frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x},
\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z} \right) + \frac{\partial}{\partial y} \left( \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x} \right) + \frac{\partial}{\partial z} \left( \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right) $$

$$= \left( \frac{\partial^2 F_3 }{\partial x \partial y }- \frac{\partial^2 F_3 }{\partial y \partial x } \right) + \left( \frac{\partial^2 F_1 }{\partial y \partial z }- \frac{\partial^2 F_1 }{\partial z \partial y } \right) + \left( \frac{\partial^2 F_2 }{\partial z \partial x }- \frac{\partial^2 F_2 }{\partial x \partial z } \right) =0 $$

$$【4番目の公式(第1成分)証明終り】(最後の式では消える項ごとにまとめました。) $$

5番目の公式に関しては少々計算が面倒ですが、定義に当てはめて丁寧に計算する事で結果が得られます。特別な定理や計算技巧は必要ありません。

この他にも、勾配・発散・回転の組み合わせによる色々な公式が存在します。

勾配・発散・回転の公式②:積分を含む公式

勾配・発散・回転のいずれも微分(偏微分)を使って定義されるものであるわけですが、発散と回転に関してはそれらに対する積分を考える事で独特な形の公式が成立します。しかも、それらは物理の理論の中でも重要です。

2つの公式を、ごく簡単にですが挙げておきます。上記でも少し触れた「発散定理(ガウスの定理)」と「ストークスの定理」です。これらは積分を含む公式であり、通常の積分ではなく「法線面積分」「接線線積分」「体積積分」という種類の積分が含まれます。

$$発散定理:\int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}$$ $$ストークスの定理:\int_S \mathrm{rot}\overrightarrow{A}\cdot d\overrightarrow{s} = \int_C \overrightarrow{A}\cdot d\overrightarrow{r}$$

ここでは、C:閉曲線、S:閉曲面の表面、V:閉曲面内の領域 を表しています。

接線線積分については力学でも使う考え方ですが、法線面積分については初歩的な運動の解析にはあまり使わないかもしれません。基本的な考え方は共通していて、微小な領域において内積の計算をしてから積分をする(合計する)というものです。

体積積分は重積分で表す事もでき、法線面積分も内積の処理をした後に重積分として表す事もできます。(しかも、その事が証明で重要です。)

閉曲線上の接線線積分の積分方向は、xy平面などの平面上で考える場合には反時計回り(曲線の内部が左側に来る向きであり、閉曲線の「正方向」とも言います)として考えます。
空間上に閉曲線がある場合には、閉曲線を外周とする曲面の表側を決めたうえで、接線線積分の積分方向を定めます。

このベクトル解析の領域は、物理の電磁気学や流体力学と合わせて学んでみる事がおすすめです。数学的に詳しい考察が必要な部分と、応用で重要になる部分との関連がよく分かるようになると思います。

重積分の理論と計算

重積分の定義と計算法、累次積分、変数変換と関数行列式について説明します。
微積分の中では、微分方程式無限級数偏微分の理論と並んで、応用数学でも重要です。

高校数学での1変数の積分の定義と公式は別途に詳しく説明しています。

重積分の物理学での応用としては、例えば電磁気学等で使うガウスの発散定理があります。

重積分とは「多変数関数に対する積分」

重積分とは、多変数関数に対する積分です。定積分・不定積分の両方があります。2変数の時を2重積分、3変数の時を3重積分、n変数の時をn重積分(あるいは「多重積分」)・・と、言う事もあります。

重積分の定義と表記方法
積分領域が長方形ではない場合の考え方と処理
重積分の簡単な計算:累次積分による例
重積分と面積・体積との関係 

重積分の定義と表記方法

多変数関数F(x,y,z,・・)をx、y、z、・・のそれぞれで積分する計算を重積分と言います。
単純化のため、ここでは2変数関数F(x,y) を例にします。

計算の仕方の結論を先に言ってしまいますと、まずxだけで積分の計算を行い、その後でyについて積分の計算を行います。yの積分を先に行ってからxで積分しても同じ結果になります。

  1. まず最初は、yなどの変数は定数とみなしてxで積分計算。
  2. xに関して定積分の値を代入したら、今度はyで積分計算。
重積分の表記と計算 $$\int_{y1}^{y2} \int_{x1}^{x2}F(x,y)dxdy=\int_{y1}^{y2}\left(\int_{x1}^{x2}F(x,y)dx\right) dy$$

このような計算の仕方を「累次積分」とも言います。
xの次にyと、続けて逐次的に計算するという意味合いです。
1つの積分変数に着目して積分計算する時は、他の変数は定数扱いにします。
不定積分として表記するなら次のような形になります。

$$\int\int F(x,y)dxdy$$ この時に、後述するように積分領域が長方形ではない場合には、積分区間として定数ではなく関数を代入する場合があります。

変数を増やした場合でも表記方法は2変数の場合に準じます。
例えば3変数なら次のようになります。

$$ 定積分:\int_{z1}^{z2} \int_{y1}^{y2}\int_{x1}^{x2}F(x,y,z)dxdydz \hspace{10pt}不定積分\int \int\int F(x,y,z)dxdydz$$

積分領域が長方形ではない場合の考え方と処理

◆積分区間について、積分を行うxy平面の領域が「長方形」であれば積分区間は
定数を端とする閉区間になります。(例えば [0,1])
他方、領域が座標軸に対して斜めになっていたり、曲がっていたりする場合には次のようにします。

まず、いずれかの変数をもう1つの変数の関数として表して、それを区間とします。
つまり、xとyの2変数で重積分をする時に、まずxで積分をするとすれば領域の端を構成する曲線をyの関数x=x(y)、x=x(y)として区間としておきます。

次に、yを定数とみなして原始関数を式で表せたとします。
その式のxの部分に、通常の定積分計算のようにx=x(y)とx=x(y)を代入をして引き算します。
【例えばx=2yであるとかx=yであるといった形を直接代入します。】
その計算の結果、変数xは全て消えてyだけの関数になります。

最後に残った変数については、定数の区間の定積分を実行します。

3変数以上の場合でも考え方は同じで、変数をx、y、zとして積分する場合には、最初に積分をする変数の区間は2変数関数として表され、2番目に積分する変数は区間が1変数関数で表され、最後に残った変数は区間が定数という形になります。

長方形でない領域の重積分の例
yから先に積分する場合には、yをxの関数で表して先に計算します。

例えば、x=yとx=2yで囲まれる領域を積分範囲を考えたとしましょう。この時に、yに関しては閉区間 [0,2]を考えるとします。その領域上でてきとうな2変数関数F(x,y)があったとして、まずxで積分をする前提であるなら重積分は次のように計算します。

$$\int_{y1}^{y2}\int_{x1}^{x2}F(x,y)dxdy=\int_0^2\int_{\large{y^2}}^{\large{2y}}F(x,y)dxdy$$

一度そのように具体的な関数を区間に代入して表した場合には、積分の順番はx→yのようにきちんと決めて計算を行います。

$$つまり、\int_0^2\left(\int_{\large{y^2}}^{\large{2y}}F(x,y)dx\right)dyのような形で計算を行います。$$

重積分の簡単な計算:累次積分による例

もう少し簡単な例として、てきとうな2変数関数としてF(x, y) = xy というものを考えて、重積分してみましょう。

この時、定積分の場合は x の範囲と y の範囲の両方が指定される必要があります。ここでは、例として x の積分区間は [0, 1]、y の積分区間は [4, 5] という範囲であるとします。【つまり積分する領域が長方形である場合です。】
【★数学では、この2つの範囲を表記する為に [0, 1] × [4, 5] と書く場合があります。この場合の「×」記号は、掛け算ではなくて「直積集合」を表すための記号です。】

では、その設定で重積分してみます。

$$ \int_{4}^{5}\int_{0}^{1} F(x, y) dxdy= \int_{4}^{5}\int_{1}^{2} xy dxdy = \int_{4}^{5} \left[\frac{yx^2}{2}\right]_0^1dy= \int_{4}^{5} \frac{y}{2}dy=\left[\frac{y^2}{4}\right]_4^5=\frac{9}{4} $$

まずyを定数とみなして計算を進める事がポイントです。
1変数の積分の計算さえできれば、計算の考え方としては難しくないはずです。

重積分と面積・体積との関係

1変数の関数の積分には、グラフで表した関数の「面積」という意味がありました。

では多変数の重積分には何の意味があるかというと、2変数関数の重積分には「体積」としての意味があります。この時、積分変数の側のdxdyを面積要素と呼ぶ事があり、物理などで用いる場合はdSと書く場合もあります。(S は surface の頭文字です。)
◆参考:ベクトル解析における法線面積分の考え方

xとyが直交座標の変数であるとき、dxdyは(微小な)長方形の面積というわけです。累次積分によって重積分を計算する場合は、1回目にxで積分することで、各dyに対する非常に薄い板のような立体ができあがり、それをyで積分して全体の体積になるというイメージです。

他方、3変数関数の重積分の場合は、空間上に分布する何らかの値を、特定の領域全体に渡って合計したものという意味があります。この場合、dxdydzを体積要素と呼ぶ事があり、物理などではdvで表記する事もあります。(vは volume の頭文字。)

1変数の積分にも言える事ですが、多変数の重積分においても、不定積分がうまく導出できない場合があります。しかし、積分は「和」の極限値であり、近似できるという考え方によって、コンピュータ(プログラミング)による「数値計算」で積分値を計算する事が可能です。

変数が増えても、物理的な意味付けができる場合には dX1dX2dX3dX4・・・といった積分変数の積を考えて重積分を行う場合もあります。

重積分の変数変換論

重積分の積分変数の変換は、偏微分の理論と深い関係があります。

変数変換の公式と、基本的な考え方:曲線に沿った積分
変数変換の理論と関数行列式:2変数の場合
3変数以上の場合の重積分の変数変換 

変数変換の公式と、基本的な考え方:曲線に沿った積分

通常の重積分を累次積分で計算する時には、まずx軸に沿って関数の積分値を、各yの値に対して計算し、次にy軸に沿って積分をするわけです。

そこで、x=2u+v, y= u+3v のような変数変換をするとします。この時、xとyではなくてuとvで積分する事を考えてみます。

この場合、 じつはxy平面上の「u曲線」と「v曲線」に沿って積分を行う事になります。上記のように変数変換がuとvの1次式である場合は曲線ではなく直線になりますから斜交座標のようなります。

物理などで使われる変換の代表的なものは、極座標変換です。この場合、x=rcosθ, y=rsinθ という変換を行いますが、rとθで積分をする場合には θ 曲線(rが一定:つまり同心円)とr曲線(θが一定:つまり原点から伸びる放射状の直線)に沿って重積分を行うというわけです。

ただし、変換の式を直接代入するだけではじつは不十分で、次に述べますように「関数行列式」と呼ばれるものを掛け算しないと、計算がうまく行かないのです。

変数変換の理論と関数行列式:2変数の場合

1変数の積分での x=x(t) という変数変換では、積分時に(dx/dt)というオマケが必ずついてきました。では、多変数の重積分の場合は、このオマケの部分はどうなるのでしょうか?

この場合は、x=x(u、v), y=y(u, v)である時の長方形の面積 dudvと、それに対応するxy平面での領域の面積比が、積分計算の時に必ず乗じられるのです。この計算を行うには、偏微分を用います。

平面の領域にてきとうにたくさんの点を打って結び合わせる事で、領域を小さな三角形の集まりに近似できます。(もちろん数学的には、正確な領域の面積との差を無限に小さくできるという事です。)

今、それらの点がxy平面上のu曲線、v曲線上に打たれていると考えます。 u曲線とv曲線を、非常に細かい「折れ線」であると考えます。
ここでのポイントは、1つ1つの微小な線分を「偏微分係数」であると考える事です。duに対してx方向には (∂x/∂u)du 、y方向には(∂y/∂u)duの変化があるベクトルが伸びるわけです。【具体的な点では偏導関数の変数に値を代入。】これは図で考えたほうが分かりやすいと思います。

重積分の変数変換と関数行列式
三角形(あるいは平行四辺形)の面積については次のように考えます:
底辺×高さの計算で、高さは「1つのベクトルの長さ×正弦(sinθ)」で表せます。
これについて 成分計算を行うと、ベクトルの成分を用いて簡単に表せるのです。

すると、各点から始まる微小三角形の面積は、平面ベクトルの公式(ベクトルによる平行四辺形の面積公式)により、次のように表せる事が分かります:

微小三角形の面積比 $$dS=\frac{1}{2}\left(du\frac{\partial x}{\partial u}dv\frac{\partial y}{\partial v}-dv\frac{\partial x}{\partial v}du\frac{\partial y}{\partial u}\right)=\frac{1}{2}dudv\left(\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u}\right)$$ これはuv平面の三角形領域(1/2)dudvの面積と、それに1対1に対応するxy平面上の(三角形)面積の関係を表しています。
うしろにくっついてくる偏微分で表される部分が面積比であり、
この形は行列に対する「行列式」の形になっているので「関数行列式」とも言います。
「関数行列式」の定義(2変数関数の場合)

x=x(u、v), y=y(u, v)である時、 $$\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u}\hspace{5pt}を「関数行列式」と呼び、$$ $$\left|\frac{\partial (x,y)}{\partial (u,v)} \right|\hspace{5pt}と表記します。$$

この関数行列式は、某学者のイニシャルをとってJで表記する事もあります。

行列式の定義については、2変数は簡単ですが3変数以上は多少込み入った考え方をします。ただし、そのように定義する事によって、いくつかの行列式の公式が成立したりします。

十分小さな微小三角形の面積と、その領域上のある関数の値を掛け合わせて全て加え合わせたものが定積分の値であり、その値は積分を微分の逆演算と考えて計算した値と等しくなるという事は、1変数の積分と全く同じです。まとめると、2変数の場合の重積分の変数変換の公式は次のようになります:

2変数の場合の重積分の変数変換の公式

x=x(u、v), y=y(u, v)である時、 $$\int_{y1}^{y2}\int_{x1}^{x2} F(x,y)dxdy= \int_{v1}^{v2}\int_{u1}^{u2} \left|\frac{\partial (x,y)}{\partial (u,v)} \right|F(x,y)dxdy$$ 具体的な定積分を行う時には、関数行列式の計算を忘れない事と、
xy平面の領域と、uv平面の領域を1対1にきちんと対応させる事が重要になります。

尚、証明はやや複雑になりますが、三角形ではなく「平行四辺形」で考える事も可能です。

3変数以上の場合の重積分の変数変換

さて、では3変数の時に x=x(u, v, w), y=y (u, v, w) , z= (u, v, w ) という変換をする場合や、4変数、5変数になった場合はどうなるのでしょうか。

この場合、式自体は変数が増えるごとにどんどん複雑になっていって手計算では手に負えなくなりますが、じつは一応規則性はあるのです。結論を言いますと、「n変数→別のn変数」の変換に対しては、n次の関数行列式を乗じればいいのです。2変数の場合は2次の関数行列式というわけです。

n変数の場合の重積分の変数変換の公式

n変数に対して別のn変数に変換する時、つまり $$X_1=X_1(u_1,u_2,u_3,\cdots,u_n),X_2=X_2(u_1,u_2,u_3,\cdots,u_n),\cdots,X_n=X_n(u_1,u_2,u_3,\cdots,u_n)の時$$ $$\int_{x11}^{x12}\int_{x21}^{x22}\cdots\int_{xn1}^{xn2} F(X_1,X_2,\cdots,X_n)dX_1dX_2dX_3\cdots dX_n$$ $$= \int_{u11}^{u12}\int_{u21}^{u22}\cdots\int_{un1}^{un2} \left|\frac{\partial (X_1,X_2,\cdots,X_n)}{\partial (u_1,u_2,u_3,\cdots,u_n)} \right|F(X_1,X_2,\cdots,X_n)du_1du_2du_3\cdots du_n$$ が成立します。
一般のn変数の場合だと式が少々込み入りますが、要するに変換の式を代入して関数行列式を掛けてから積分の計算を行えばいい、という意味です。

この場合の関数行列式の作り方は、行列の行の部分にx、y、z、・・を対応させ、列の部分に対して偏微分する変数u、v、w、・・を対応させ、行列式を作るという形になります。
3変数の場合は、次の形の行列式を考える事になります:

$$\left|\frac{\partial (x,y,z)}{\partial (u,v,w)} \right|=\Large{\left| \begin{array}{ccc} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}&\frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}&\frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}&\frac{\partial z}{\partial w}\end{array}\right| }$$

3変数の場合には空間上の4点を結ぶ事で4面体の集まりとして近似する事が(必ず)できますが、じつは3次元空間での「平行6面体の体積」が行列式の形でうまく表現できるという命題があります。
そこで、dudvdwという「立方体」の体積と、対応するxyz空間上の領域の体積比がうまい具合に関数行列式で表せるというわけです。4変数以上の場合は図にはうまく描けなくなりますが、考え方としては同じで、dudvdwdtといった量と、対応する領域の量の比を考えるわけです。

ただし、これは数学的な理論としてはそうなるという事であり、実際問題として4次以上の重積分の変数変換を「手計算」でひたすらやるという作業は、応用上も純粋数学上もほとんどないと言ってよいかと思います。他方で、関数行列式を展開せずにそのままの形で数学的な議論を進める場合や、数値計算を行う場合にはn変数の重積分の変数変換が使われる事もあります。

物理では重積分はどう使われる?

物理で重積分を累次積分で計算する時は、変数変換してから計算する事が比較的多いかもしれません。ただし、変換の仕方は、基本的には極座標や円柱座標などの分かりやすいものが多いです。
(※理論を複雑にしてしまうと応用上の変数変換のメリットがないので、基本的に、式と計算を簡単にするために変数変換を行います。)

また、具体的な定積分の数値の計算はせずに種々の公式や命題を用いて延々と式変形を進めて、最終的には積分の計算が必要なくなる式を理論的に得てから、計算をするという事もよくあります。

例えば、電磁気学では重積分の形の式が非常に多く用いられますが、直接的に重積分を計算するというよりは、モデルの作り方を工夫 する (例えば領域を球面に選ぶなど)事によって、場面に応じて使える公式を得る目的で用いられます。
コンデンサーやソレノイドに対して成立する式などは平易なものですが、おおもとの形には多変数の微分や積分が含まれており、特別な場合をうまく考える事によって式を簡単にしているのです。

全微分の考え方とその応用

今回は、全微分という、少し聞きなれないかもしれない考え方について説明します。これは、前回の偏微分の理論と直接的に関係するものです。全微分の考え方を述べた後に、物理の熱力学での応用について述べます。

英名では、全微分は exact differential あるいは total differential と言います。

★ このページでは、「関数」と言ったら全て(偏)微分可能な関数の事を指す事にします。そのため、「連続な」「偏微分可能な」といった表現は基本的に省略いたします。解析学的に見る場合は、それらの考察も重要になります。

「全微分」とは何か?定義と考え方・偏微分との関係

初めに、数学的な定義と考え方です。本質的に、偏微分と深い関わりがあります。

全微分の定義 単独で表れるdF、dx、・・
全微分と「合成関数に対する偏微分の公式」との関係
1変数の場合の dF や dx の元々の数学的意味は? 

このように、dF/dxといった通常の微分演算(により得られる導関数)ではなく、dF といった単独の表記で表されるものが全微分と呼ばれるものです。

全微分の定義 単独で表れるdF、dx、・・

全微分とは多変数関数について定義されます。多変数関数に関しては偏微分を考える事ができますが、この偏微分による偏導関数を用いて全微分は定義されます。

定義:(多変数関数の)「全微分」

多変数関数 F(x,y,z,・・) の全微分とは、次のように定義します。 $$dF=\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy+\frac{\partial F}{\partial z}dz+\cdots$$ このように、単独でdFというものを定義し、別の単独のdxやdyを偏微分(偏導関数)と組み合わせて定義するものが全微分です。(※単に「微分」と呼ぶ事もありますが、当サイトでは避けます。)
物理では、良く使われます。意味については後述していきましょう。

この「dF」が単独で表現される事に違和感を覚えるかもしれません。実際、このままでは具体的な関数の微分計算はできません。例えば、具体的な関数 \(F(x) =e^x\) に対して dF というものを考えたとしても、それは \(dF=d(e^x)\) とだけしか表現のしようのない物でそれ以上計算はできません。導関数として計算できるのは、あくまでdF/dxです。

では、上記定義で表される「全微分」とは何の意味があるのでしょう?この定義の計算としての意味は、じつは合成関数に対する偏微分の公式です。

全微分と「合成関数に対する偏微分の公式」との関係

全微分の定義には偏微分が含まれていますが、本質的に、偏微分について成立する公式と直接的な対応を持っています。合成関数に対する偏微分の公式は、x、y、z・・の各変数が、別の1つだけの変数の関数である場合は次のようになります。

合成関数に対する偏微分の公式

多変数関数 F(x,y,z,・・) の各変数が別の変数t(のみ)の関数である時: $$\frac{dF}{dt}=\frac{\partial F}{\partial x}\frac{dx}{dt}+\frac{\partial F}{\partial y}\frac{dy}{dt}+\frac{\partial F}{\partial z}\frac{dz}{dt}+\cdots$$ x、y、z、・・が、t、u、v、・・などの多変数関数になる場合は、
ここでのdF/dt、dx/dtなどは偏微分∂F/∂t、∂x/∂tなどになります。

さて、これを全微分の定義の式と見比べてみましょう。
すると、形式的には「全微分の定義」の式について「両辺をdtで割った」形を考えてみるとぴったりと偏微分の公式に一致する事が分かるでしょうか?
じつは全微分の定義にはこのような「意味」があるわけなのです。

!ちょっとだけ注意

★ これは形式的に対応するという事であり、数学的に厳密にはdxをdtで「割って(除算して)」dx/dtにするという演算は行わない事に注意してください。後述もしますが、dx/dtと書いた場合はあくまで「導関数」を指し、極限値として得られる関数です。
ですから、全微分の定義式は偏微分のほうの公式から「導出・証明されるもの」ではなく、あくまで定義になります。

多変数関数が常に合成関数として扱えるという保証はないわけですが、具体的な計算を考える時に意味を持つのは合成関数に対する偏微分の公式のほうです。

それを踏まえたうえで、多変数関数に対する全微分を考える事は割と多くあり、特に物理では使用する事が多いです。

1変数の場合の dF や dx の元々の数学的意味は?

物理などの応用で使う場合は、dF や dx という表記を単独で用いる場合は「微小量」を表す事が多いです。ただし、じつは数学の解析学的にもきちんと意味があります。

上記のように 多変数関数F(x,y,・・)に対する「全微分」dFが定義されるわけですが、じつは1変数関数F(x)に対しても同様にdFという単独の表記にも解析学での定義があります。

解析学的には、dFやdxというのは、
じつは本来は、ある点を新しい原点として設定した時の座標軸の変数です。

その新しい原点での、関数F(x)に対する接線の傾きをAとして、
dF=A(dx)
という1次式を考えます。この1次式は、近似1次式とも呼ばれます。
解析学的に厳密には、この時のdFの事を1変数関数におけるF(x)の微分と言うのです。
この意味では、接線の傾きは「割り算」によって「A=(dF)/(dx)」という事になります。

ただし、導関数として dF/dxと書く時は、あくまで極限値としての導関数として、
dF/dx という表記全体で1つの意味を持つ事にしています。
(導関数に具体的な値を代入したものを微分係数と呼ばれます。)
こういった事が、決め事として少々分かりにくいところかもしれません。

★ 数学において、特に解析学・微分積分学においてdF/dxの事を「導関数」と呼ぶ事にこだわって、慣習的な俗称である「微分」という言葉で呼ぶ事を極力避けようとする傾向があるのはこういう理由があると言えます。本来、数学の用語として区別する事に決めているものであるためです。
ただし応用ではその区別があまり重要でないため(近似的にほぼ同じものとみなせるという解釈を前提におくため)、慣習的に導関数と言わずに「微分」と言ってしまう事が多いわけです。

じつは全微分の定義とは、この意味で用いられているものなのです。すなわち、多変数関数に対しても同様に、dF=A(dx)+B(dy)+C(dz)+・・を考えるという意味です。2変数関数の場合は、3次元座標での「接平面」を考えている事になります。
★ 上記でも触れましたが、多変数の場合でも「微分」と言ってしまう場合もあります。しかしこのサイトでは、基本的に多変数の場合は「全微分」と呼ぶ事にします。

平面と3次元空間の場合の接線と接平面の考え方は、変数の数が増えても同様に使えます。

この時に、1変数関数の場合には接線の傾きと考えていたものについて、多変数関数の場合は各変数に沿った傾きとするわけです。座標上の具体的な点においては、偏導関数に特定の値を代入した偏微分係数が各傾きになります。
すなわち上の式で、A=∂F/∂x、B=∂F/∂y、C=∂F/∂z、・・という事です。
意味としては、こういう事なのです。

重要公式:積の形の関数に対する全微分

2つの多変数関数F(x,y,z,・・)と G(x,y,z,・・)の積【掛け算】FGに対する全微分d(FG)を考えてみます。結論を先に言うと、1変数の微分の時の積の微分の時と同じ形の式が成立します。これも、物理での応用で使われます。

積の形の関数に対する全微分の公式
証明に必要な事: 積の形の関数に対する偏微分
積の形の全微分の式の証明 

これに関する理屈はごく簡単ですが、物理などでの応用では重要になります。

積の形の関数に対する全微分の公式

積の形の関数に対する全微分については、通常の1変数関数の場合の、積に関する微分公式同様の式が成立します。
これは数学の解析学ではそれほど重要な式ではありませんが、物理では使う事があるので述べておきましょう。

積の形の関数に対する全微分 2つの多変数関数 F(x,y,z,・・)と G(x,y,z,・・)の積 FG に対する全微分です
次のように、2つの項の和の形で表されます。 $$d(FG)=(dF)G+(dG)F$$ $$=\left(\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy+ \frac{\partial F}{\partial z}dz+\cdots\right)G+\left(\frac{\partial G}{\partial x}dx+\frac{\partial G}{\partial y}dy+\frac{\partial G}{\partial z}dz+\cdots \right)F$$ これは全微分の定義から導出もできますし、積の形の合成関数の偏微分公式に対応させても可です。

この公式が成立する事を示すには、「積の形の関数に対する偏微分」がどのように表されるかという事が問題になります。ただ、この問題はじつは難しくなくて、1変数の時と同じように考える事が出来ます。

証明に必要な事: 積の形の関数に対する偏微分

偏微分に関して、積の形に対する計算は通常の微分の場合と同じく次式が成立します。

$$\frac{\partial }{\partial x}(FG)= \frac{\partial F }{\partial x} G+ \frac{\partial G } {\partial x} F$$

これに対する証明は、(合成関数の場合とは違って)1変数の場合の積に対する微分公式と全く同じです。プラスマイナスでゼロになる2つの項を加える事で証明できます。式の形を見ると、本質的に1変数の時と同じである事が分かります。
2変数の場合を記しますが、何変数でも同じです。

$$ \frac{\partial }{\partial x}(F(x,y)G(x,y))= \lim_{h\to 0}\frac{F(x+h,y,)G(x+h,y)-F(x,y)G(x,y)}{h}$$

$$= \lim_{h\to 0} \frac{F(x+h,y)G(x+h,y)-F(x,y)G(x+h,y)+\{ F(x,y)G(x+h,y)- F(x,y)G(x,y)\}}{h} $$

$$= \lim_{h\to 0} G(x+h,y) \frac {F(x+h,y) – F(x,y)}{h}+ \lim_{h\to 0} F(x,y) \frac {G(x+h,y) – G(x,y)}{h}$$

$$= \frac{\partial F }{\partial x} G(x,y)+ \frac{\partial G }{\partial x} F(x,y)【証明終り】 $$

このように、1変数の時と同じです。

★ 合成関数の時に通常の微分と偏微分とで追う式の形が変わるのは、1つの変数tなどに対してx、y、z、・・の全ての変数に関して x+h, y+h, z+h,・・を考える必要があり、プラスマイナスゼロになる項を複数加える必要があるからです。

積の形の全微分の式の証明

では、関数が積の形の場合の全微分の式の「証明」について見てみましょう。
こういう場合、上記の定義のFの部分に(FG)という積の形をそのまま入れて、計算が可能であれば進めていって公式を得るという方法をとります。すると、よく見ると積の部分は偏微分の計算さえできればよい事が分かります。

積の形になっている部分の偏微分を、1変数の時と同じ要領で計算していきましょう。すると・・・・。

$$d(FG)=\frac {\partial (FG) }{\partial x}dx+ \frac {\partial (FG) }{\partial y}dy$$

$$= \left(\frac{\partial F }{\partial x} G+ \frac{\partial G }{\partial x} F\right) dx+ \left(\frac{\partial F }{\partial y} G+ \frac{\partial G }{\partial y} F\right) dy$$

$$ = \left(\frac{\partial F }{\partial x}dx + \frac{\partial F }{\partial y}dy \right)G+ \left(\frac{\partial G }{\partial x}dx + \frac{\partial G }{\partial y}dy \right)F=(dF)G+(dG)F 【証明終り】$$

このように、偏微分に関して積の計算をした後、上手にFとGに関してまとめると、dFとdGの定義の形が出てくるので d(FG)=(dF)G+(dG)F という形にまとまるわけです。

つまり、結果として、多変数関数に対する全微分も、積の形の関数に対しては
1変数関数や偏微分の場合と同じ形になる、という事です。

じつは、合成関数の偏微分に対して積の形の場合を計算して対応させると考えても同じ結果を得ます。
その場合の計算も記しておきましょう。
(上記と同じく、x,y はtだけの関数とします。つまり∂x/∂t=dx/dtです。)

$$\frac{d(FG)}{dt}=\frac {\partial (FG) }{\partial x}\frac{dx}{dt}+ \frac {\partial (FG) }{\partial y}dy$$

$$= \left(\frac{\partial F }{\partial x} G+ \frac{\partial G }{\partial x} F\right) \frac{dx}{dt} + \left(\frac{\partial F }{\partial y} G+ \frac{\partial G }{\partial y} F\right) \frac{dy}{dt} $$

$$= \left(\frac{\partial F }{\partial x} \frac{dx}{dt} + \frac{\partial F }{\partial y} \frac{dy}{dt} \right)G+ \left(\frac{\partial G }{\partial x} \frac{dx}{dt} + \frac{\partial G }{\partial y} \frac{dy}{dt} \right)F= \frac{dF}{dt} G+ \frac{dG}{dt} F $$

得られた式から形式的にdtの部分を除くと、積の形に対する全微分の式にちょうど対応します。

物理での使い方:熱力学での例

全微分の形で議論を進める分野の1つの例として、初歩的な熱力学の理論について述べます。

熱力学での色々な変数
内部エネルギー変化dUの計算 全微分と偏微分の関係の利用
エンタルピーHの変化量dH と積に対する全微分の式 

熱力学の理論における、全微分の使用例を見てみましょう。
この理論はさらに、化学反応に対する物理化学的な考察に使われたりします。

熱力学での色々な変数

熱力学とは、通常の力学や電磁気学とは少し性質が異なり、どちらかというと物理化学などの分野と相性がよい領域です。熱力学では、ある「系」(例えば容器に入った気体)について、まず次の量を考えます。

  • 体積V
  • 圧力P
  • 温度T【これは、いわゆる絶対温度で、0[℃]を298[K]とします。】
  • 内部エネルギーU

また、これらを組み合わせた量や、系に出入りする「熱」(温度とは別)も考えます。

  • 熱 q
  • 仕事 w【本質的には力学での仕事と同じものです。】
  • エンタルピー H=U+PV【主に発熱・吸熱として観測できる量です。】
  • エントロピーS ・・dS = Δq /T なるSとして定義

これらの変化量を dV 、dP などの全微分の形で表記して議論を進めます。物理でこれらを考える場合には時間という変数で微分・積分が可能と考えられますからdv/dtなどを考えても同じ事ですが、導関数ではなくて全微分の形で話を進めてしまう事が普通です。

上記の量のうち、「エントロピー」(記号S)というものだけが妙な定義のされ方をされているように見えるかと思いますが、これで計算を行うという理論になります。意味としては、系の「乱雑さ」の度合いを表す量です。

$$積分によりS=\int_{T1}^{T2 } \frac{Δq}{T} dTとも表せます。【このページでは、あまり関係ありません。】$$

「エンタルピー」という量(記号H)も少し分かりにくいかもしれませんが、定圧条件(dP=0)で dH=Δq となり、発熱・吸熱として比較的観測しやすい量なので敢えて定義されるものになります。

参考:系の「状態量」であるものは体積・圧力・温度・内部エネルギー・エントロピーであり、熱や仕事は「非状態量」です。「非状態量」という語には、系にされる仕事と形に出入りする熱の比は条件によっていくらでも変えれるので系自体の状態の量を表さない・・という意味合いが含まれています。熱力学では重要な考え方です。微小量を考える時、状態量については全微分としてdVなどで表し、非状態量についてはΔqなどと書いて区別する事が多いです。

内部エネルギー変化dUの計算 全微分と偏微分の関係の利用

まず、内部エネルギーの「変化」を考えます。つまり、Uに対してdUを考えるわけです。このdUは、全微分です。しかし最初は、上記の全微分の定義は直接的には使わずに少しだけ計算を進めます。いくらか変形した後で適用する箇所があります。

物理的な考察から、dU=Δq + Δw  と書いておきます。※dw、dqと書いてもよいのですが、非状態量である事を強調して区別する事が多いです。

意味としては、外部からの圧力で仕事がされた、外部から熱が入ってきたという状況です。(あるいは膨張などで外部に仕事をした・熱が外に出て行ったなど。)

ここで、まずΔw=- (dV)P の関係があります。
これは、等圧(dp=0)の条件下で、次の仮定でのモデルを考える事によります:

  • 系が外部に仕事をした時は体積が増える。
  • その分、内部エネルギーは減る。(温度は下がる。)

逆に、逆に外部から仕事をされた場合は体積は減りますが内部エネルギーは増えます。

また、熱の変化Δqに関しては、
dS=Δq/T ⇔ Δq=(dS)T
の関係からエントロピーでの表記に直します。

組み合わせて、dU=(dS)T -(dV)P という関係式を作っておきます。

数学的な全微分の定義の式を直接使って考察をするのはここからです。

ここで、Uが多変数関数U(S,V,・・)であるとして、
さらに「等圧条件」dP=0と「等温条件」dT=0という場合を考えます。
(このように所定の条件を加えて考察する事が多いです。)
すると、全微分としては次のようにります。

$$dU=\frac{\partial U}{\partial S}dS+\frac{\partial U}{\partial V}dV+\frac{\partial U}{\partial T}dT+\cdots= \frac{\partial U}{\partial S}dS+\frac{\partial U}{\partial V}dV $$

普通に全微分を考える際にはdP、dTを含めた項も含まれますが、dP=0、dT=0【圧力、温度の変化は無し】という条件を設けるので式が簡単になるわけです。

成立する2式を並べて書くと次のようになります。

得られる2式 $$ dU=T(dS) -P(dV)  かつ$$ $$ dU = \frac{\partial U}{\partial S}dS+\frac{\partial U}{\partial V}dV $$

この事から何が言えるでしょう?
結論を言いますと、Uに対するS,Vの偏導関数がそれぞれT、Pであると解釈がなされるのです。

得られる解釈$$すなわち、等温・等圧条件のもとでは\hspace{10pt}\frac{\partial U}{\partial S} =T,\hspace{10pt} \frac{\partial U}{\partial V}=-P\hspace{10pt}という解釈がなされます。 $$

ここから先も計算による考察が続くのですが、このページではここで止めておきます。

エンタルピーHの変化量dH と積に対する全微分の式

次の例として、エンタルピーHの変化量dHを考えてみましょう。
これに対しては、積に対する全微分の式を用いるのです。

「エンタルピー」Hの定義は、H=U+PV です。も考えておきます。

次に、Hの変化量(全微分)を考えます。
これは dH=dU+d(PV) になります。

ここで上記の「積の形に対する全微分」の公式を適用しましょう。
PVという、圧力と体積の積になっている部分に対して適用します。すると、
dH=dU+d(PV) = dU+(dP)V+(dV)P
という形になるわけです。

参考:等圧条件dP=0の時、dH= dU+(dP)V+(dV)P = dU+(dV)Pになります。
他方、dU=Δq+Δw=Δq-(dV)Pなので、dU+ (dV)P=Δq
つまり、dP=0 ⇒ dH=Δq という事であり、
等圧条件下ではエンタルピーの変化は熱の変化(系への出入り)として表される
・・という解釈が、理論的に成立するというわけです。

前述でも触れましたように、この部分の計算は1変数関数の積に対する微分公式と同じ形になるので「通常の微分(変数は時間)」と捉えて計算しても結果的に差し支えない箇所です。
ただし、本質的にこれらのP、V、U、Sなどは多変数関数である事に注意も必要です。そのため、一応多変数関数の全微分と捉えたほうがよいとは思います。

この他に、A=U-TS、G=H-TSといった量を考えます。(いずれもエネルギーとして考えられます。)dAやdGも、dHと同じく積に関する全微分の式を考えて変形を行う事ができます。

熱力学というのは決して分かりやすい分野ではなく、この他にも色々な面倒な計算の理論があったりします。しかし、数学の偏微分や全微分の理論を踏まえておくと、初歩的な部分に関しては大分分かりやすくなるのではないかと思います。

参考文献・参考資料

■ 参考文献のリンクは、外部リンクになります。