立体の体積

体積の意味と考え方、柱体や錐体などの立体の体積の計算の仕方などについて説明します。

このページでは、「高さ」と言ったら断りのない限りは、底面から見た「立体的な意味での高さ」の事を意味しています。

立方体と柱体の体積

基本的には、1辺の長さが1の立方体の体積を1として、これが何個分あるかで立体の体積とします。それが2個分あれば体積は2、半分であれば1/2という具合です。面積が「広さ」を表す量であるのに対し、体積は大きさを表します。この時、1つの辺の長さが何倍かになれば、同じ割合で体積も増加します。

体積とは? ■ 体積の単位 ■ 柱体の体積の考え方 

体積とは?

その意味で、1辺の長さがaの立方体の体積は、a3になります。例えば1辺が2であれば2×2×2=8が体積で、「1辺が1の立方体」の8個分の大きさであるという事です。

また、直方体の体積は互いに垂直な方向に伸びた3つの辺の長さの積になります。底面が辺の長さaとbの長方形で、立体的な高さがcである直方体の体積はa×b×c(=abc)となります。

体積の単位

3つの辺の長さが掛けられるので、その意味で辺の長さに単位がついている場合には、例えばセンチメートルcmに対しては体積の単位はcmと書き、「立方センチメートル」と読みます。
単位がメートルであれば体積の単位はmと書き「立方メートル」と読みます。

この時の単位の換算は、1m=(100cm)と考えて、1m=1000000cm(=10cm)というふうにします。1立方メートルの体積は、100万立方センチメートルの体積に等しいという事です。これは、計算上の見かけはそうなるという事ではなくて、実際に立方メートルの体積の箱には1立方センチメートルのサイコロが100万個入る大きさであるという事です。

「え、そんなにたくさん入りますか・・?」

数字だけ見ると、確かにそんなに数が大きくなるだろうか?と、思ってしまいますね。しかし、100が100個あれば1万で、1万が100個あれば100万ですから、確かにそのような事になるのです。1cmのサイコロを1mの中に並べると、100個です。1mの長さの正方形には、それが100列ありますから1万個入ります。1mの長さの立方体には、それが100段ですから100万個になるという事です。身近な例で、計算してみると「意外と」大きくなるという例かもしれません。箱などの入れ物の体積を、特に「容積」と呼ぶ場合もありますが、数値として扱う時には体積と全く同じ単位や計算法を使います。

実用上の体積の単位として、「リットル」があります。記号ではℓ(「エル」の筆記体)を使います。【Lやl(小文字の「エル」)なども使われます。】これは牛乳などにも書いてある事もあるのでなじみがある人も多いかと思います。

実際、これは基本的には液体の体積を表すのに使われる事が多いものです。1リットルは、1000cmに等しい体積です。液体の体積や、液体を入れる容器の体積を特に「容量」と言う場合もあります。

化学などでは「ミリリットル」という単位もよく使います。記号は、mℓもしくはmlのように書きます。この「ミリ」は、「1ミリメートル【mm】」のミリと同じで、千分の1という意味です。【10mmは1cmですが、本来は1m=1000mmという換算です。】

つまり、1000mℓ=1ℓですが、1ℓ=1000cmでしたから、じつのところ1mℓと1cmは、体積としては全く同じです。ただ、ミリリットルのほうは液体の容量を指す事が多いという点が実用上の違いです。

柱体の体積の考え方

面積の場合、三角形の面積は
三角形→平行四辺形→長方形→「正方形が何個分詰まっている広さか」
という考え方のもとで計算していました。立体の体積も、基本的に同じ考え方です。

まず、三角柱を考えると、これは2個合わせれば底面が平行四辺形である四角柱になります。その四角柱は、出っ張っている部分を切り取って反対側にくっつければ、直方体になります。

つまり、底面の三角形の面積を出して、立体的な意味での高さを掛ければ、体積1の立方体が何個分あるかという意味での体積に等しくなります。

さらに、任意の多角柱は、三角柱に分割できます。という事は、角柱の場合には
「底面の図形の面積(=底面積)」×「立体的な意味での高さ」
によって体積が計算できるという事を意味します。

円柱や、さらには任意の閉曲面を底面とする柱体でも考え方は同じで、無数の細かい三角柱の体積の和の極限を考えます。一般に柱体の体積は「底面積」×「立体的な意味での高さ」で計算します。

平行6面体のような立体の体積も、「底面×立体的な意味での高さ」で計算できます。底面に平行な平面で各高さの断面を見ると平行四辺形である事によります。【そのような薄い四角柱の合計の極限・積分として考えると導出は楽です。】

錐体の体積

三角錐、多角錐、円錐の体積の場合は、底面積×高さ÷3で計算します。(これを使った計算は、中学校の数学や高校入試の問題でも問われる事があります。)

角錐や円錐の体積の公式

体積=底面積×高さ÷3

この「÷3」あるいは「×1/3」は一体どこから出てくるのかというと、一番簡単な導出方法は積分を使う方法ですが、それを使わないでも導出は可能です。

まず、三角錐からです。三角柱を考えて、これを体積が等しくなるように3分割する方法を考えます。この時に三角柱を、ちょうど体積が等しい三角錐3つで分割できます。三角柱の体積は「底面積×立体的な高さ」ですから、それを3で割って三角錐の体積になるというわけです。あるいは、三角錐を基準に考えるのであれば、「底面を共有し高さが等しく、かつ3倍の体積を持つ三角柱」を必ず考える事ができるので3で割ればよいというわけです。

三角錐の体積については、底面積と立体的な意味の高さが分かっていれば、三角錐である限りどんな形状であっても公式を使えます。また、三角錐には4つの面がありますが、どの面を底面としても、そこから高さを測れば体積の公式を使えます。

四角錐以上の多角錐は、全て底面を三角形の和として考える事ができます。そのため、多角錐の体積も同じく「底面積×立体的な高さ÷3」で計算できます。円も多角形で近似できるので、円錐の体積も同様になります。

柱体の時と同じ考え方で、多角錐と円錐についても同じく底面を三角形に分割して考えます。ただし四角錐以上の場合は、公式を使う時にどの面を底面として考えてもよいわけではなく、四角錐であれば四角形の面を、円錐であれば円の面を底面として、そこから高さを測ります。

球の体積については、図形だけから考えるのはかなり難しいので、積分によって体積の公式を出すのが普通です。結果は、半径をRとして(4/3)×R×円周率になります。

平方根って何だろう

平方根の考え方と基本計算について説明します。

英:平方根 square root

定義と記号の書き方

まずは定義と記号からです。

平方根とはどういうもの?

「2乗するとnになる数」の事をnの平方根と言います。
n>0の時、平方根はプラスものとマイナスのものの2つがあります。
この時、「nの平方根でプラス符号のもの」を特に「ルートn」と呼んで次の記号で書きます。
【root:植物の「根」。数学では「こん」と呼ぶ】$$\sqrt{n}\hspace{20pt}\sqrt{2}\hspace{20pt}\sqrt{3}$$ 「2乗すると2になる数」であれば「2の平方根」であり、
プラス符号のものを \(\sqrt{2}\) と書き「ルート2」と読みます。
これらを使って、マイナス符号の平方根は次のように表します。 $$-\sqrt{n}\hspace{20pt}-\sqrt{2}\hspace{20pt}-\sqrt{3}$$ マイナス1の2乗はプラス1なので、
これらを2乗しても確かにn、2、3といった数になります。

「平方」とは要するに「2乗」の事で、「平方根」の事を「2乗根」とも言います。
=2×2=4、3=3×3=9の「2乗」の事です。
長さの単位で、1平方センチメートル1cmというのがありますね。
あれに使われている「平方」です。

このとき、文字式を組み合わせた式の「平方根」を考える事もできます。
(これは一部、中学校の数学でも扱います。)$$\sqrt{x^2+y^2}\hspace{20pt}\sqrt{b^2-4ac}\hspace{20pt}\sqrt{1-\frac{v^2}{c^2}}$$尚、これらの例は1つめが図形問題で三平方の定理を使う時に出てくるような式、
2番目は2次方程式の解の公式に出てくる項、
3番目は相対性理論で重要になる量の1つです。(cは光の速さ、vは物体の速さ)
平方根の考え方は中学数学だけでなく、数学全般や数理科学で普通に使うものですので基礎事項をしっかり理解しておくと後々便利です。
これらの基本的な考え方は\(\sqrt{2}\) や \(\sqrt{3}\)と同じで、2乗すると「平方根が消える」ような計算になります。$$\left(\sqrt{x+y}\right)^2=x+y\hspace{20pt}\left(\sqrt{b^2-4ac}\right)^2=b^2-4ac\hspace{20pt}\left(\sqrt{1-\frac{v^2}{c^2}}\right)^2=1-\frac{v^2}{c^2}$$

平方根の整数倍、例えば2倍、3倍などは \(2\sqrt{2}\) , \(3\sqrt{2}\) のように書きます。
文字式のaの2倍や3倍を2a、3aと書く感覚です。

平方根を何倍かした時の書き方

整数倍の時は次のようにします。 $$2×\sqrt{2}\hspace{3pt}=\hspace{3pt}2\sqrt{2}\hspace{15pt}-3×\sqrt{2}\hspace{3pt}=\hspace{3pt}-3\sqrt{2}のように書きます。$$ 一般的には、平方根を分数倍した時には分子に平方根を一緒に書く事が多いです。 $$\frac{1}{3}×\sqrt{2}=\frac{\sqrt{2}}{3}\hspace{15pt}\frac{2}{3}×\sqrt{2}=\frac{2\sqrt{2}}{3}$$ 文字式と平方根を組み合わせる時には、2a、3bと書く感覚で平方根を文字式の前に書きます。
そこにさらに整数倍がある時は、整数・平方根・文字式の順番にする事が多いです。 $$a×\sqrt{2}\hspace{3pt}=\hspace{3pt}\sqrt{2}a\hspace{15pt}2b×\sqrt{2}=2\sqrt{2}b$$

負の数に対しても平方根を考える事ができて、例えば-2の平方根は次の2つです。 $$\sqrt{-2}\hspace{3pt}=\hspace{3pt}i\sqrt{2}\hspace{20pt}-\sqrt{-2}\hspace{3pt}=\hspace{3pt}-i\sqrt{2}$$ これらは複素数というものに属します。実数の範囲では、2乗して負の数になる数は存在しません。

小数で表すとどのような大きさ?

「2乗すると2になる数」である \(\sqrt{2}\) とは具体的にはどのような大きさの数でしょう?

\(\sqrt{2}\) の大きさは小数で表すと約1.4142135・・・になります。
この小数点は無限に循環しない形で続き、\(\sqrt{2}\) は無理数になります。

てきとうなところで小数点を四捨五入したもの、例えば「1.414」として2乗してみると
1.414 × 1.414=1.999396 であり確かに2に近い数になります。

いくつか例を挙げてみると次のようになります。

  • \(\sqrt{2}\)=1.4142135・・・
  • \(\sqrt{3}\)=1.7320508・・・
  • \(\sqrt{4}\)=2
  • \(\sqrt{5}\)=2.2360679・・・
  • \(\sqrt{6}\)=2.4494897・・・
  • \(\sqrt{7}\)=2.6457513・・・
  • \(\sqrt{8}\)=2.8284271・・・
  • \(\sqrt{9}\)=3
  • \(\sqrt{10}\)=3.162276・・・

これらのうち、2=2×2=4、3=3×3=9ですから、
4の平方根と9の平方根を考えた時にはぴったりと整数の値になります。

自然数の平方根の多くは無理数になりますが、
数直線上に有理数と合わせて大小関係を比べる事ができます。

これら平方根の小数の値は、\(\sqrt{2}\) や \(\sqrt{3}\) に関しては「1.414」「1.732」といった数値を覚えておくと便利な事もありますが、他のものはそれほど覚える必要はありません。
(ましてや、延々と続く小数を覚える必要はありません。)

それよりも重要なのは、平方根の値がどれくらいの大きさなのかを見積もる方法です。

例えば \(\sqrt{7}\) の大きさを知りたい時に「2以上3以下」といった事を知るのはじつは簡単で、
<7<3という不等式によってその事を知れるのです。
もちろんこれは4<7<9という事です。
この不等式の各値の平方根(のプラスの値)を考えると2<\(\sqrt{7}\)<3となるので、
\(\sqrt{7}\) を小数で表した時の1以上の部分の値は2になると判定できるというわけです。
(実際の値は\(\sqrt{7}\)=2.6457513・・・)

そう考えると、\(\sqrt{5}\), \(\sqrt{6}\), \(\sqrt{7}\), \(\sqrt{8}\) の小数での値がいずれも 2.23・・などの、
「2より大きく3より小さい」値になるのは偶然ではなく必然という事になります。
5、6、7、8はいずれも4より大きく9より小さいからです。

この考え方は、何かてきとうな自然数の平方根に対して一般的に適用できます。
\(\sqrt{17}\) の大きさを見積もる時には
16<17<25、つまり4<17<5ですから
4<\(\sqrt{17}\)<5といった感じになります。(実際の値は\(\sqrt{17}\)=4.1231・・)

また、てきとうな\(\sqrt{151}\) といった数の大きさを見積もる時には
144<151<169、つまり12<151<13により、12<\(\sqrt{151}\)<13なので
\(\sqrt{151}\)=12.・・・・といった数になる事が分かります。(実際は12.2882・・)

この不等式の作り方・使い方に関しては高校入試でも問われる可能性はあります。

平方根に関する計算・公式

\(\sqrt{2}\) と \(\sqrt{8}\) の小数での値を比較すると、じつはちょうど2倍の関係になっています。

  • \(\sqrt{2}\)=1.4142135・・・
  • \(\sqrt{8}\)=2.8284271・・・=2×1.4142135・・・=\(2\sqrt{2}\)

これは偶然ではなく、8=2×2という関係があるのでそうなるのです。
\(2\sqrt{2}\) を2乗すると、確かに2×2=8になります。

一般的に、平方根の中に「何かの数の2乗」がある場合にこのような計算ができます。

平方根の中にある数の2乗が含まれる場合の計算 $$a>0として、\sqrt{a^2b}=a\sqrt{b}が成立します。$$

いくつか具体例を挙げると次のような感じです。

  • \(\sqrt{8}\) = \(2\sqrt{2}\)
  • \(\sqrt{12}\) = \(2\sqrt{3}\)
  • \(\sqrt{18}\) = \(3\sqrt{2}\)
  • \(\sqrt{24}\) = \(2\sqrt{6}\)
  • \(\sqrt{27}\) = \(3\sqrt{3}\)
  • \(\sqrt{32}\) = \(4\sqrt{2}\)
  • \(\sqrt{4x}\) = \(2\sqrt{x}\)

掛け算に慣れていないと少し分かりにくいかもしれませんが、
例えば32なら32=16×2=4×2のように考えるのです。それで\(\sqrt{32}\) = \(4\sqrt{2}\)になります。
(※入試対策としては、これを頭の中でできるようにするのが望ましいです。)

次に、「分母の有理化」という計算も重要です。
これは、分母に平方根がある場合には、分子と分母の両方にその平方根を掛ける事で
「分母を有理数にできる」という計算です。

分母の有理化 単独の平方根が分母にある時と、分母が平方根の和や差になっている時の2パターンがあります。 $$\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}×\sqrt{a}}=\frac{\sqrt{a}}{a}$$ $$\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}=\frac{\sqrt{a}-\sqrt{b}}{a-b}$$

1つめの式は、\(a=\sqrt{a}×\sqrt{a}\) を式変形して考えても同じです。

2つめの式は(a+b)(a-b)=a-bの関係を使っています。
同じ関係を使って、分母が平方根の差の場合には次のようにできます。$$\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{a}+\sqrt{b}}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{\sqrt{a}+\sqrt{b}}{a-b}$$

具体例では、例えば次のようになります。

$$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\hspace{20pt}\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\hspace{20pt}\frac{1}{\sqrt{1-x^2}}=\frac{\sqrt{1-x^2}}{1-x^2}$$

$$\frac{1}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}=\frac{\sqrt{3}-\sqrt{2}}{3-2}=\frac{\sqrt{3}-\sqrt{2}}{1}=\sqrt{3}-\sqrt{2}$$

$$\frac{1}{\sqrt{2}-1}=\frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{\sqrt{2}+1}{2-1}=\frac{\sqrt{2}+1}{1}=\sqrt{2}+1$$

この具体例のように「分母の有理化」を行う事で分母が1になり実質的に「分母が消える」場合もあります。
慣れてくると、途中の計算は暗算でできるようにもなると思います。

平方根同士の掛け算・割り算と足し算・引き算については次のような規則が成立します。

平方根の四則演算
  1. 掛け算と割り算:
    平方根の中身同士の掛け算・割り算をして計算で可能。$$\sqrt{a}×\sqrt{b}=\sqrt{ab}\hspace{15pt}\frac{\sqrt{b}}{\sqrt{a}}=\sqrt{\frac{b}{a}}$$
  2. 足し算と引き算:
    基本的に同じ数の平方根同士で足し算・引き算を行い、そこからさらに計算したいなら小数で近似して数値的に加え合わせるなどする。 $$a\sqrt{c}+b\sqrt{c}=(a+b)\sqrt{c}\hspace{15pt}a\sqrt{c}-b\sqrt{c}=(a-b)\sqrt{c}$$ $$\sqrt{2}+\sqrt{3}のような式は、このままだとこれ以上計算できない。$$ $$(小数に近似すれば\sqrt{2}+\sqrt{3}≒1.414+1.732=3.146のようにできる)$$

平方根の掛け算については、(\(\sqrt{a}×\sqrt{b}\))=\(\sqrt{a}×\sqrt{a}×\sqrt{b}×\sqrt{b}=ab\) なので、
\(\sqrt{a}×\sqrt{b}=\sqrt{ab}\) としてよいという事です。

割り算のほうについては「分母の有理化」もできますが、分子と分母の両方に単独の平方根がある場合には先に割り算をして平方根をとる事も可能である、という意味です。

$$\sqrt{2}×\sqrt{3}=\sqrt{2×3}=\sqrt{6}\hspace{15pt}\frac{\sqrt{6}}{\sqrt{3}}=\sqrt{\frac{6}{3}}=\sqrt{2}$$

分母と分子にある平方根が単独ではなく和や差の形になっている場合には、項を分ける・分母の有理化をするなどの計算が必要になります。

$$\frac{2\sqrt{2}+\sqrt{6}}{\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}}=2+\sqrt{3}$$

$$\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{6}(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}=\sqrt{6}(\sqrt{3}+\sqrt{2})=\sqrt{18}+\sqrt{12}=3\sqrt{2}+2\sqrt{3}$$

平方根の足し算や引き算は、基本的には文字式の足し算引き算のように考えるという事です。
例えば、文字式の場合には 2a+3a+b=5a+bのようにして、aとbの具体的な値が分からない限りはそこで計算はストップしますが、それと同じように考えるという事です。$$2\sqrt{2}+3\sqrt{2}+\sqrt{3}=5\sqrt{2}+\sqrt{3}【この先は平方根を含んだままの形では計算しない】$$

各平方根を有限の小数に近似する(つまり有理数に近似する)のであれば、さらに計算をする事が可能です。

三角形の相似

三角形の相似条件は高校入試を始めとして中学数学では重要事項の1つです。

図形問題を解くために必要という事でもありますが、三平方の定理などの重要な定理が成立するための根拠の1つになっている事なども重要と言えるでしょう。

平面において2つの三角形が「相似【そうじ】」であるとは、
ごく簡単に言うと「大きさは違うが形は同じ」であるという事です。

★これに対して、「大きさも形も同じ」なのが三角形の合同です。
意味する事と、成立する条件の違いに注意しましょう。
合同と相似は一見似ていますが扱い方が違うものなので、気を付けましょう。
「2つの三角形が互いに合同」ならば「2つの三角形は互いに相似でもある」と、確かに言えます。 しかしこの逆は成り立ちません。「相似であるから合同でもある」と言ったら、それは間違いです。
【※中学数学の範囲外になりますが詳しくは必要条件と十分条件の関係から把握する事になります。合同である事は相似である事を含んでいるという包含関係になります。】
そのため、合同と相似をごっちゃにしてはならず、関係を意識しながらも丁寧に別々に整理する事が必要であり、重要でもあるのです。

2つの三角形が合同であるならば、相似でもあるとは言えます。相似であっても合同ではない場合があります。

もっとも、単に見た目が似ているというだけでは相似であるとは言わず、きちんと数学的な条件があります。

相似条件と証明での使い方

次の3つの条件の「いずれか」を満たす2つの三角形は互いに相似であると言います。「いずれか」という事は、「1つでも当てはまればよい」という事です。

2つの三角形が相似であるための条件

次のいずれか1つが成立するならば2つの三角形は互いに相似です。

  1. 2組の角の大きさがそれぞれ等しい
  2. 2組の辺の長さの比と、その挟む角の大きさがそれぞれ等しい
  3. 3組の辺の長さの比がそれぞれ等しい

この時「△ABCと△DEFは(互いに)相似である」などと言い、△ABC∽△DEFとも書きます。(無限大の記号に似てますが別物です。)この時、「同じ形」として対応する角が順番通りになるように書きます。
相似な2つの三角形の互いの「辺の長さの比」を相似比と言います。例えば1:2とか1:3という関係が成立します。場合によっては整数比とは限らず、1:\(\sqrt{2}\) とか2:\(\sqrt{3}\) などの相似比もあり得ます。

三角形同士が相似である事がひとたび判明すれば、これら3つの条件は全て成立します。つまり、例えば2組の角度が等しいという条件が成立すれば、3組の辺の長さの比もそれぞれ等しいという事です。

ただし、相似である事を証明するためにはどれか1つだけ判明していればよいという事です。

★比較する2つの三角形が直角三角形であれば、その時点で「対応する1つの角がそれぞれ等しい(90°で等しい)」事は言えているので、もう1つだけ等しい角度を見つければよいといった作業になります。

繰り返しますが合同条件と似ていますが違うもの(相似条件のほうが制約が緩い)なので注意しましょう。
例えば、辺の長さが分からないけれど角度だけで比較できるのは相似条件のほうであって、合同条件にはそのような条件はないのです。(暗記するのではなく意味を考えてみると分かりやすいと思います。角度だけが分かっている場合、形は同じであっても辺の長さは伸び縮み可能なのです。)

合同である場合は「相似比」が1:1であると言う事もできます。それが「大きさも同じ」という意味であって、大きさが異なる場合には相似比が1:2とか2:3とかになるわけでそのような場合も含めた「形は同じだが大きさは異なる」関係を相似と呼ぶわけです。

2つの三角形が相似である事を正確に見るには、「証明」が必要です。これは、見た感じ「同じ形」に見えるけれど実際は違う(辺の比が一定にならない、角度が異なる)という事があるからです。

高校入試の出題として多いのは「2組の角の大きさがそれぞれ等しい」事を使うパターンです。これは、同じ大きさの角度である部分が2つ見つかればよいという事です。
より具体的には、対頂角の関係、平行線の同位角・錯角の関係、円周角の定理などを使って「角度の大きさが等しい」事を示します。また、共有する角がある場合にはもちろんその角度は2つの三角形で等しいのです。

証明のパターン
中学数学・高校入試で問われるパターンはこういったものが多いです。あらかじめ直角三角形という条件が与えられる事で残り1つの角の大きさだけを調べればよい場合もあります。

残りの2条件は証明の時に使う事もありますが、むしろ相似である事が証明された後に辺の比や面積比を計算させる問いで使われる事が多いように思います。

相似な三角形の面積比

三角形の相似比(辺の長さの比)が1:nの場合、面積比は1:nになります。
これは、例えば1つの三角についての底辺がn倍、高さについてもn倍になるためです。

高校入試ではよく問われる事項です。

相似な2つの三角形の面積比

辺の長さの比が1:nの相似な三角形の面積比は1:nになります。
(辺の長さの比がa:bなら、面積比はa:b

例えば底辺が2、高さが3の三角形の面積は2×3÷2=3ですが、
各辺の長さが2倍になったとすると、高さも2倍になる事に注意して
面積は(2×2)×(3×2)÷2=12
つまり2×2=4倍になるという事です。

これは公式として関係式を暗記するのではなく、図に描いてイメージしながら練習してみたほうがよいと思います。

この図の場合、相似な三角形の辺の長さの比は1:3です。相似比が整数のようにきれいな値の場合は図に描いてみて何倍になるのかというイメージをつかむのもよいと思います。平行線の補助線を引く事で図の大きな三角形を9分割できます。三角形の高さも確かに相似比倍になる事については、垂線を補助線として描けば直角三角形についても相似関係が成立する事から分かります。

辺の長さの比が1:3ではなく2:3のような場合は面積比は2:3=4:9です。

$$辺の長さの比が2:3であれば大きい三角形の面積は小さい三角形の\left(\frac{3}{2}\right)^2=\frac{9}{4}倍$$

辺の比に関する補足説明

相似な三角形の辺の比に関して、補足的な説明をします。

三角形同士が相似である場合に「対応する辺同士の比」は等しくこれを相似比と言うのは前述の通りです。

他方で「同じ三角形の中の辺同士の比」も、相似な2つの三角形で等しくなるのです。これは1つの三角形の中で3通りの比がありますからもちろん一定ではなく、一般的に相似比とも異なる値になります。

しかし、例えば△ABCでAB:BC=1:3であったとすると、それに相似な三角形△DEFがあったときにDE:EF=1:3という事も同じく言えるという意味です。
この時、AC:AB=2:5であれば同様にDF:DE=2:5という事です。
(※この場合、この条件だけから具体的な相似比は分からない事には注意。互いの対応する辺の長さの比に関して、相似比という一定の比がある事だけ分かります。)

式で書くと、△ABC∽△DEFであれば、
AB/DE=AC/DFという比の関係(この一定の比が相似比)に加えて
AB/AC=DE/DF という関係も成り立つという事です。

これは、じつは結構単純な話です。
AB/DE=AC/DF の両辺をACで割り、両辺にDEをかける事で得られます。
式変形をしなくても相似関係にあるという事は同じ形で大きさだけが異なると意味を考えれば分かりやすいかと思います。

「形は同じでサイズだけが違う」というイメージをつかむと難しさが消えるでしょう。
辺の長さの関係を丁寧に整理する必要がある場合もある事にだけ注意。

証明問題も含めて、図形問題が得意になるコツはあまり難しく考えない事です。
意味を考えながら図を描いてみましょう。

他に図形問題として関連が深いのは角の二等分線と三角形の辺の比の関係などで、これは三角形の相似を根拠として成立します。三角形の相似についてじゅうぶん理解していれば、関係式を暗記せずにその場で導出する事も可能なのです。

「形」さえ同じであれば、三角形の中の2辺の「比」が一定であるという事は、三角比の考え方の基礎となっています。これは、直角三角形に限定して、特定の角度に対しては2つの辺の長さは一定になる事を利用して決められるものです。高校数学で教えられるものですが、考え方としては三角形の相似の考え方が分かっていれば理解できる内容になります。

円周角の定理

円周角の定理とは、円の1つの弧に対する円周角の大きさは必ず等しく、しかも中心角の半分の大きさであるというものです。言葉よりも図で見ると分かりやすいでしょう。

この定理は、高校入試(特に公立)では非常に出題頻度が高いものです。しかし逆に高校数学では重要度が減り、大学数学や物理学では基本的には使わないと言ってもよいほどその重要度が下がります。

これは、高校数学以降の話では「円に内接する三角形」よりも「円その物」のほうが対象とする図形として重要である事が大きく関わっていると思います。そのため、円周角の定理とは中学数学というか「円に内接する三角形」という話に限定する範囲においては重要な定理である、という位置付けで理解するとよいかもしれません。

定理の内容と意味

まず、「円周角」とは、円に内接する三角形の1つの角の事で、「その対辺を弦とする円弧のうち長い方(優弧)」に着目して呼ばれるものです。例えば「円弧ABに対する円周角」のように使われます。図で見ましょう。一目で分かると思います。

また、「中心角」とは、ある円弧の弦の両端の点のそれぞれと円の中心を結ぶ線分によって構成される角の事です。これも、図を見ましょう。

定理の内容

円周角の定理の内容は、1つの円弧が固定されている時、その円弧に対する任意の円周角の大きさは等しく、しかもその円弧に対する中心角の大きさの半分であるというものです。

円周角の定理

円周上に異なる2点ABがあり、円の中心をOとすると次の2つの事が成立します:

  1. 優弧AB上のA、Bとは異なる任意の点Cに対し、
    円周角∠ACBの大きさは互いに等しい。
  2. 2∠ACB=∠AOBが成立する。

尚、円弧のうち短い方(劣弧)側の弦と結んでできる角も、大きさは互いに必ず等しくなります。ただし中心角との大きさの関係は2:1にはなりません。(中心角の半分を180°から引いた大きさになります。)

高校入試を含めて中学数学では、円周角に関する問いは三角形の相似・合同・面積比に関する事項と組み合わされる事が圧倒的に多いです。

また、円周角が直角になる場合とその条件に関しても好まれて出題がなされる傾向があるようです。

「円周角の大きさは必ず中心角の大きさの半分である」という事が定理の主張の1つですが、これを円弧が半円の場合・弦が直径の場合に適用すると円周角は必ず直角であるという事です。

これは、半円の弧の両端を直線で結ぶと必ず円の中心を通るので中心角=180°とみなせる事によります。すると、その円周角はその半分の大きさで90°つまり直角になるというわけです。後述するように証明する時にはこの事項自体を場合分けで示す必要がありますが、理屈はじつに簡単です。)

証明

円に内接する三角形が内部に中心を含むかそうでないかで場合分けします。

①内接三角形が内部に円の中心を含む場合

円に対する内接三角形が内部に円の中心を含む時、まず最初に分かるのがじつは「円周角は中心角の半分」というほうの事実です。

これは、内接三角形の1つの辺の両端と円の中心で構成される三角形が、必ず二等辺三角形になる事によるのです。

そして、1つの円弧を固定する時、もう1つの円周上の点を動かしても中心角は同じである事に注意します。これは、この条件のもとで1つの円弧に対する任意の円周角は必ず等しい事を意味し、円周角の定理の主張そのものです。

下図で言うと、次のようになります:

$$(180°-2\alpha)+(180°-2\beta)+(180°-2\gamma)=360°\Leftrightarrow 180°-2\alpha=2\beta+2\gamma$$

$$\Leftrightarrow 180°-2\alpha=2(\beta+\gamma)$$

最後の式は「中心角=円周角の2倍」を表しています。これはこの条件下で点AとBを固定しておけば、点Cが移動しても \(\alpha\) の値は変わらないので円周角の定理の内容が成立するのです。

証明の説明図
いずれの場合でも、半径を2辺とする二等辺三角形を3つ考える事が証明のポイントです。

②内接三角形が内部に円の中心を含む場合

次に、内接三角形が内部に円の中心を含まない場合です。この時も、中心角を構成する二等辺三角形をもとにして証明をします。この場合においても二等辺三角形を3つ作ります。

じつは相似関係などを使う必要は特になく、
「三角形の内角の和は180°」「四角形の内角の和は360°」という、より初歩的な事実関係だけでじゅうぶんなのです。

図で言うと、中心角は \(180°-2\alpha\) で、そこと隣り合う二等辺三角形の中心角に相当する角は \(180°-2\beta\) です。これらを合わせると、\(360°-2\alpha-2\beta\) となります。

しかし、その角度はよく見ると \(180°-2\gamma\) に等しいのです。よって、次の関係が成立しています。

$$180°-2\gamma=360°-2\alpha-2\beta\Leftrightarrow 2(\beta -\gamma)=180°-2\alpha$$

ここで、式に出てくる \(\beta -\gamma\) は何かというと、これはじつは図の円弧ABの円周角です。つまり、この場合でも「中心角=円周角の2倍」が成立します。

そして、上記2つの場合において点AとBは固定したままでよいという事に注意しましょう。移動するのは、円周角をなす点Cだけなのです。中心角は変化しません。という事は、上記2つの場合の円周角は、いずれも中心角の大きさの半分であり、ともに一致するのです。

ゆえに、内接三角形が円の中心を内部に含むかどうかは気にしなくてよい(その事が示された)という事です。

③内接三角形の1辺上に円の中心がある場合

さて、このように場合分けすると、「だったら三角形の1つの辺が『中心を通る場合』も考えなければだめではないか?」という話になります。実際その通りです。

ただし、この第3の場合が、じつは最も簡単なのです。

直径に対する円周角

円周角をつくる頂点から中心に向かって線分を引きます。すると、二等辺三角形が2つできます。ここで、円周角をなす頂点と直径からなる三角形は、2つの二等辺三角形の角だけから構成されるのです。

すると、三角形の内角の和が180°である事から、この場合の円周角の大きさは90°である事が分かるという計算です。

それゆえ、このような場合でも定理の内容は成立しているので、上記2つの場合と合わせてまとめてよいという事になります。

関連事項:円に内接する四角形

同じく中学数学と高校入試で問われる内容として、
「円に内接する四角形の対角線上で向かい合う角の和は180°である」というものがあります。

この理由については、円周角の定理を使うとすぐに分かります。

図のように、補助線として対角線を引きます。この時、内接四角形の1つの角が2つの部分から構成されていると考えます。図で言うと xとyで表しています。

$$\alpha=x+yとおきます。$$

円に内接する四角形

それらxとyについて、それぞれ異なる円周角であるとみなす事ができるので、それぞれについて定理を適用します。すると、対角線上で向かい合う内接四角形の角の大きさは、180°-(x+y)という事になります。(「三角形の内角の和は180°」を使用。)

しかし \(\alpha=x+y\) でしたから、\(\alpha+180°-(x+y)=\alpha+180°-\alpha =180°\) です。これで題意は示された事になります。

円周角の定理は、高校数学での正弦定理を証明するために使われたりもします。

三角形の角の二等分線

三角形の角を二等分する線を引いた時に成立する1つの図形的性質があります。

これは高校入試の図形問題でよく出題され、場合によっては大学入試で部分的に扱われる事もあります。

三角形の角の二等分線に関して成立する関係

△ABCにおいて線分BC上に点Dがあり、線分ADは∠BACを2等分するという。
(つまり∠BAD=∠CADとなっている。)
この時、線分の長さの比についてAB:AC=BD:CDが成立する。

まず、三角形の1つの角を二等分する線を引きます。これは、例えば60°の角度であれば30°と30°に分割する線を引くという意味です。

次に、その線が1つの辺とぶつかる交点を考えます。すると、じつはその交点は、他の2辺の長さの「比」でその辺を分割しているのです。こういったものは、図で見たほうが多分分かりやすいでしょう。

三角形の二等分線①
例えばAB=6、AC=4であれば点DはBCを6:4=3:2で分割します。BC=5であればBD=3、DC=2であると決まるという事です。

これを証明するのは比較的簡単です。次のようにします。
(★ただし、入試の問題を解くという観点からは結果の関係式を確実に覚えておいたほうがよいです。しかし仮に忘れた時でも証明は難しくないという事です。)

まず、二等分する角につながる三角形の辺の1つを延長します。次に、二等分する角の対辺の1端から、角の二等分線に「平行」な直線を引きます。すると三角の相似関係により証明ができるというのが簡単な流れです。この時、二等辺三角形ができる事に気付く事も1つの重要な点です。

三角形の二等分線②(証明)
1つの辺の延長と、補助線として設ける平行線をつなげると大きな1つの三角形ができます。それと元の三角形の相似関係を考え、さらに図の△ACEが二等辺三角形である事に注目すると関係式が得られるのです。

この関係が中学校の数学、特に高校入試で問われる場合は、単独ではなくて他の図形上の関係と合わせて計算をさせる事が多いと思います。例えば、三角形の相似問題の1つの条件として使われたり、三角形の面積比を計算させるといった具合です。

また、円周角関連の事項と合わせた出題もあり得ます。この手の問題は計算を面倒にさせようと思えばいくらでもそのように問いを作れるので、いくらか練習しておかないといきなり問われた時になかなかうまくいかない事もあろうかと思います。

高校入試などでは三角形の面積比を計算させる問いなどで使わせる例があります。この図の例では、例えば情報としてAB、AC、BCの長さだけが与えられていて△AEFと△ABCの面積比を計算させるといった具合です。

さて、この三角形の二等分線に関する問いは多いですが、中学での勉強を終えて高校での学習に移る時、そんなに使うのかというと正直あまり使わないと思います。ただし、図形の平行・直角・相似・合同といった考え方は引き続き使用される事があります。

そのため、試験問題を解くという事を抜きにして語るのであれば、重要なのは関係式が成立する「理由」のところだと思います。平行線の性質や相似関係によってこのような事が言えるという事が、本当は一番覚えて理解しておきたいところかとは思います。

因数分解を学ぶ意味と計算のコツ

因数分解と言えば中学数学で悪名高いものの1つかと思います。

これをめぐる話は色々あるのですが、まず数学の教員すらもよく言ってしまう「まとめる」という言葉で因数分解を表現する事に、じつはひとつの問題があります。その事についても見ていきましょう。

因数分解は積の形に「分解」する事

日常で使う因数分解 ■ 中学校等での式の因数分解

日常で使う因数分解

因数分解は、「分解」です。

1つの数を、2つ以上の「積」の形に分解する事を言います。

その意味で、50=10×5のような形で表す事はやっている事としては因数分解です。

合計50円の物を買うために10円玉を5枚取り出すという時には、
じつは因数分解の思考をしているのです。

因数分解の本質的な意味 $$因数分解とは:50=10×5のように、A=B×Cなどの積の形に分解する事$$

50=5×5×2と表せるように、A=B×C×Dのような3つ以上の積で表す事も指します。

後述するように、中学校等で教わる「式に関する因数分解」も本質的に同じ意味です。

因数分解を「何に使うのか」という事は頻繁に言われる事ですが、じつのところ日常の生活でも使われる、数に関する操作と思考の1つが因数分解なのです。

掛け算は普段から使う計算だと思いますが、2×3=6に対して、これを逆に見て6=2×3という見方をする事が因数分解の考え方と言ってもよいかと思います。

中学校等での式の因数分解

さてしかし、そうは言っても、多くの人が問題としているのは次のような「式の」因数分解の事でしょう。

$$x^2+2xy+y^2=(x+y)^2,\hspace{10pt}x^2+3x+2=(x+1)(x+2)\hspace{10pt}等$$

で、こういう問が出題される時に、教員もよく言ってしまうのが、「まとめる」という表現です。そう言いたくなる気持ちは分かりますし、実際上、便利な表現だとも思います。

しかし、このように式に関する因数分解も、操作としてはまとめているのではなく「分解」しているのです。上記の因数分解を、もう1度書いてみましょう:

$$(x^2+2xy+y^2)=(x+y)^2=(x+y)(x+y),\hspace{10pt}(x^2+3x+2)=(x+1)(x+2)\hspace{10pt}等$$

どうでしょうか?

これだと、1つの数を2つ以上の数の積に「分解」している事が分かりやすいのではないでしょうか。50=10×5として表すのと全く同じなのです。

通常は、左辺のかっこはなくても同じ意味になるので省略してしまいますが、式の場合であっても複数の積の形に「分解」して表す事も可能であるというのが中学や高校で教わる因数分解の意味なのです。

式の因数分解も積の形への「分解」 $$因数分解とは:(x^2+3x+2)=(x+1)(x+2)のように、1つのまとまりを積の形に分解する事。$$

因数分解を行う事が有用であるのは、何と言っても方程式の解が得られる事にあります。これは、実数や複素数についての 「A×B=0 ⇔ A=0またはB=0」 という性質を利用しているのです。(※高校以上で学ぶ「行列」などについてはこの関係式が成立しないので注意。)

$$(x+1)(x+2)=0\Leftrightarrow x=-1\hspace{5pt}または\hspace{5pt}x=-2$$

$$したがって、x^2+3x+2=0の\hspace{5pt}解は、x=-1\hspace{5pt}または\hspace{5pt}x=-2$$

こういった具合に計算ができるので、数学、自然科学、工学の理論で使われるというわけです。

因数分解のコツ

学ぶ「意味」は分かったとしても、それでも計算問題として苦手であるという人もいるかと思います。

ではうまく計算して得意になるコツはあるのかというと、人によってやり方は多少違うので一概には言えませんが、その1つをここで挙げてみたいと思います。

$$■問い:x^2+15x+56\hspace{5pt}の因数分解はどのようになりますか。$$

こういった問題があった時には「定数項」に着目するとよい場合が多いです。
すなわち、上式では56の部分です。

因数分解とは逆に式を展開する時の事を考えると分かりやすいのですが、

$$(x+a)(x+b)=x^2+(a+b)x+ab$$

ですから、上記のような2次式の因数分解を考える場合、定数項を何らかの「2つの数の掛け算」として表す事がヒントになります。この2つの数とは任意の実数であったり複素数でもいいわけですが、中学校で問われる問題の場合、大抵は整数だと思います。

56の場合、1×56、2×28、4×14、8×7などの表現方法があります。(できれば頭の中で思い浮かべられると、試験の時は楽です。)

次に1次の項\(15x\)に着目し、1×56、2×28、4×14、8×7の数の組み合わせのうち、加えたら15になる数はあるかというと、8と7の組み合わせが該当しますね。従って、因数分解は次のようになるのです:

$$x^2+15x+56=(x+8)(x+7)【解答】$$

因数分解2
実際問題として試験等でこの手の問題を解く時には、頭の中で2つの数の掛け算と足し算を組み合わせて、あてはまるものを選んで因数分解するとよいかもしれません。もちろん、分かりにくい場合は紙に書きましょう。

このように「綺麗な形ですんなりと」因数分解を見つけられないケースも当然ありますが、学校で出題される問題は解けるように作ってあるので、大抵は綺麗な数の組み合わせである事が多いと思います。

式にマイナスが入っている場合の考え方も同じで、

$$x^2-7x-18$$

の因数分解は、掛けて -18になって、今度は(マイナスも含めて)加えると -7 になる組み合わせを考えます。この場合は、-9 と 2 が該当しますので、次のように因数分解できます。

$$x^2-7x-18=(x-9)(x+2)$$

因数分解に関する応用問題

中学~高校の問題 ■ 大学数学での問題

中学~高校の問題

さて、学校で出題される問いは上記のようにある程度分かりやすいものである事が普通ですが、次のような「汚い式」の因数分解はどうすればよいでしょう。

$$■問い:x^2+\sqrt{2}x-6\hspace{5pt}の因数分解はどのようになりますか。$$

これを見て、因数分解は「できない」のではないか?と思う人もいるかもしれませんが、因数分解はできます。綺麗な形には到底ならないという前提付きですが・・。

こういった問題は普通はあまり出ないとは思いますが、高校入試や、考え方自体は大学入試のセンター試験程度では出題される可能性はあるかもしれません。

因数分解3
係数は理論上、実数だけでなく複素数でも可です。手計算で解けるかは別問題にして、因数分解が可能であるのは一般の3次式でも4次式でも5次式でも、何次式でも同じ事が適用できます。(ただし、無限級数の場合には少し話が変わってきます。)

理屈としては、二次方程式は異なる2つの解か、重解1つを必ず持ちます。しかも、これは手計算で解を出す事ができます。

$$x^2+\sqrt{2}x-6=0を満たす\hspace{5pt}x=\alpha\hspace{5pt}または\hspace{5pt}\beta\hspace{5pt}は存在し、(x-\alpha)(x-\beta)=0となる$$

という事を利用して「因数分解」が可能であるという事です。ですから、因数分解しなさいと言ってますが、実質的には2次方程式を解くという問題なのです。

$$\left(x+\frac{\sqrt{2}}{2}\right)^2-\frac{1}{2}-6=0$$

$$\Leftrightarrow \left(x+\frac{\sqrt{2}}{2}\right)^2=\frac{13}{2}$$

$$\Leftrightarrow x+\frac{\sqrt{2}}{2}=\pm\frac{\sqrt{26}}{2}$$

$$\Leftrightarrow x=\frac{-\sqrt{2}\pm\sqrt{26}}{2}$$

方程式にした場合の2つの解が分かりましたので、これで「因数分解」できます。

$$x^2+\sqrt{2}x-6=\left(x-\frac{-\sqrt{2}+\sqrt{26}}{2}\right)\left(x-\frac{-\sqrt{2}-\sqrt{26}}{2}\right)$$

$$=\left(x+\frac{\sqrt{2}-\sqrt{26}}{2}\right)\left(x+\frac{\sqrt{2}+\sqrt{26}}{2}\right)【解答】$$

尚、仮にこういう問いが出題されて答えの形が汚くて合ってるかどうか不安になる時はチェックをするとよいでしょう。因数分解したものを、逆に展開してみてもとの式に一致するかを見ればよいのです。

二次方程式の「解と係数の関係」として考えても同じです。

$$(x – \alpha)(x – \beta)=x^2-(\alpha+\beta)x+\alpha\beta$$

解と係数の関係を使う場合、プラスマイナスの符号に多少の注意が必要です。

ここでは、因数分解された最後の結果を展開する事でチェックしてみましょう。

$$\left(x+\frac{\sqrt{2}-\sqrt{26}}{2}\right)\left(x+\frac{\sqrt{2}+\sqrt{26}}{2}\right)\hspace{5pt}を展開計算します。$$

$$\frac{\sqrt{2}-\sqrt{26}}{2}+\frac{\sqrt{2}+\sqrt{26}}{2}=\sqrt{2},\hspace{10pt}\frac{\sqrt{2}-\sqrt{26}}{2}×\frac{\sqrt{2}+\sqrt{26}}{2}=\frac{2-26}{4}=\frac{-24}{4}=-6$$

このようになるので、正しく因数分解できている事を確認できます。

■参考:3次式の因数分解

一般の3次式を因数分解する方法も基本は2次式と同じですが、一般の3次方程式の解を手計算だけで出すのは結構面倒なので、てきとうな「簡単な1つの解」を見つけさせて、「1次式と2次式の積」の形の因数分解をさせる問いのほうが、出題されるとすれば多いのではないかと思います。

例えば、 $$x^3-x^2-x-2$$ という3次式の因数分解では、じつはこの式に \(x=2\) を代入すると 0 になるので、
まず \((x-2)\) が1つの因数(掛け算を構成する項の1つ)であると分かるのです。

つまり、もとの3次式の因数分解は $$x^3-x^2-x-2=(x-2)(x^2+Ax+B)$$ の形になります。ここで、定数項に着目すれば $$-2=-2B\Leftrightarrow B=1$$ であり、1次の項は $$-1=B-2A=1-2A\Leftrightarrow -2=-2A\Leftrightarrow A=1$$ という事になりますから、これで解答を出せるわけで $$x^3-x^2-x-2=(x-2)(x^2+x+1)$$ と、因数分解できます。2次式の部分をさらに因数分解する事も可能です。

大学数学での問題

大学数学の範囲だと、全体の中の位置付けとしてはそれほど重要ではないのですが、一応存在するテーマとして「無限級数の因数分解」というものがあります。例えば次のようなものです:

$$1-\frac{x^2}{6}+\frac{x^4}{120}-\frac{x^6}{5040}+\cdots=\left(1-\frac{x^2}{\pi^2}\right)\left(1-\frac{x^2}{4\pi^2}\right)\left(1-\frac{x^2}{9\pi^2}\right)\cdots$$

左辺は和が無限に続く「無限級数」で、右辺はそれが因数分解され無限個の積の形になった「無限積」です。
\(\pi\) は円周率で 3.14・・を表します。

もちろん、魔法のように唐突にこの関係式が得られるのではなく、1つ1つの数学的事実を組み合わせると、結果としてはこのような関係式も成立する事が分かる、というものです。

この関係式を得るには少々面倒な手続きがあって、まず左辺の無限級数は、じつは微積分の知識を使って出てくるものなのです。【正弦関数のマクローリン展開を x で割ったものです。】

そして、それを「因数分解」する時に、そもそも無限級数を無限積の形に「因数分解してよいのか?」という問題もじつはあります。これについても、極限や微積分に関する分野での考察が必要になります。これは、厳密に考えると結構面倒です。

いずれにしても中学でも高校でも大学でも、因数分解において重要な考え方は「積の形にする」という事なのです。