ガウスの積分【距離の逆2乗に大きさが反比例するベクトル場】

ガウスの発散定理の応用として、「ガウスの積分」と呼ばれる定積分があります。
また、そのガウス積分の応用例として、電磁気学における「ガウスの法則」をクーロンの法則から数式的に導出する理解の仕方があります。

関連(基本知識):■ベクトルと内積 ■微分の公式集 ■積分の基本計算

関連(応用):■ベクトル解析 ■法線面積分 ■ガウスの発散定理

◆非常に名称が紛らわしいのですが、用語の使い分けは次のようになります。

  • ガウスの発散定理」(ガウスの定理)
    数学の定理で、法線面積分と体積分について成立する一般的な関係
  • ガウスの積分」【このページで説明している公式】
    数学で公式が存在する法線面積分(の定積分)で、対象の関数は
    「大きさが距離の2乗に反比例する3次元のベクトル場」
    (ベクトル場とは成分が座標 x, y, z を変数とする多変数関数であるベクトル関数)」
  • 「ガウスの法則」
    物理上の電荷に対する定量的な法則で、クーロンの法則のより一般的な表現。
    数式的に、上記2つの事項と直接的に関わる。

ガウスの積分(公式)

ガウス積分とは、ベクトル場の大きさが「原点からの距離の逆2乗に比例する」(※)形である場合の、閉曲面全体に対する法線面積分の事を指します。
すなわち、式で書くと次のベクトル場に対する閉曲面全体に対する法線面積分です。(簡単のため、比例定数は1とします。)

※「距離の逆2乗に比例する」=「距離の2乗に反比例する」
いずれも1/(r) が掛け算されている事を意味します。

$$r=\sqrt{x^2+y^2+z^2}\hspace{3pt}のもとで、\overrightarrow{r}=\left(\frac{x}{r^2}\hspace{2pt},\hspace{2pt}\frac{y}{r^2}\hspace{2pt},\hspace{2pt}\frac{z}{r^2}\right)\hspace{2pt}に対して、$$

ガウスの積分

$$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}\hspace{5pt}をガウスの積分と言います。$$

☆ここでの「距離の『3乗』」は、全体のベクトルの向きを単位ベクトルで表す都合上出てくる、見かけ上のものです。中身としては、大きさが1の単位ベクトルを作るための1/rと、考えている対象の関数の1/(r)の積という事になります。

この時に閉曲面Sはどんな形でも、どんな場所にあってもよいのですが、
どのような閉曲面に対してであろうと、ガウス積分が取り得る値は3つしかないという公式があります。

公式:ガウスの積分の計算結果

原点と閉曲面の位置関係によって結果が分かれます。

  1. 原点が閉曲面Sの「外側」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0$$
  2. 原点が閉曲面Sの「曲面上」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=2\pi$$
  3. 原点が閉曲面Sの「内側」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=4\pi$$

2番目(曲面上)と3番目(曲面の内部)の結果は、より詳しくは、ある極限値としてこの結果が成立します。また、物理学ではこのようには説明せず、値が無限大になってしまう点を「特別扱い」できるデルタ関数という特殊な関数を使ってここで説明する内容を表現する事も多いです。

物理学への応用:電磁気学における「ガウスの法則」

ガウスの積分の応用として代表的なものが、電磁気学における「ガウスの法則」です。クーロンの法則を一般化した法則で、4つのマックスウェル方程式のうちの1つで静電場についての式です。

電磁気学におけるガウスの法則

電荷(※)を囲む閉曲面をSとする時、
法線面積分を計算すると必ず次のようになっているという関係がガウスの法則と呼ばれています。 $$\large{\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\frac{Q}{\epsilon_0}}$$ $$\epsilon_0 はクーロン力を表す時に使う比例定数で、\epsilon_0=8.8543×10^{-12}$$ ※ここで言う「電荷」は、点電荷でも、分布した電荷でも同じ結果になります。

この法則の内容を言葉で簡単に言うと、静電荷を囲む閉曲面を領域を考えるとき、その閉曲面がどんな形状であろうとも法線面積分の値は「内部の電荷の電気量のみに依存する」という事です。

「ガウスの法則」は物理学上の法則なので「とにかく成立する」で終わり、でもよいのですが、クーロンの法則が電荷同士の距離の逆2乗に比例する形である事から、法線面積分を計算するとガウスの積分の形になっています。

そのため、クーロンの法則から出発して電場(+1[C]の電荷が受ける電気力)の法線面積分を計算するとガウスの法則の形が得られるという論理も成り立つのです。

公式の証明

では、ガウスの積分に関して成立する公式の証明をしてみましょう。

次の3つの場合分けがあります。

原点が閉曲面の「外側」にある場合
原点が閉曲面の「曲面上」にある場合
原点が閉曲面の「内側」にある場合 

この証明にはガウスの発散定理の結果と、ベクトル場に関する発散(div)の計算を使います。

$$以下、対象とするベクトル場を F=\frac{\overrightarrow{r}}{r^3}とおきます。$$

①原点が閉曲面の「外側」にある場合

この場合、ここで対象のベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を強引に計算すると、実は必ず0になるという結果が得られます。

計算は少し込み入って面倒ですが、高校の微積分の知識と、偏微分の定義(1つの変数だけに着目し、他の変数は定数扱いする)だけ知っていれば計算する事ができます。

まず、面倒なのを承知でrをx、y、zでの表現に戻します。

$$r=\sqrt{x^2+y^2+z^2}=\large{(x^2+y^2+z^2)^{\frac{1}{2}}}ですから、$$

$$\overrightarrow{F}=\large{\frac{\overrightarrow{r}}{ r^3}}=\Large{\frac{1}{ (x^2+y^2+z^2)^{\frac{3}{2}}}\overrightarrow{r}}$$

次に、ベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を計算します。
この時に、座標成分が具体的にx、y、zで表される必要がさらにありますから、
\(\overrightarrow{r}\)を成分で表します。
しかし、そもそもこのベクトルの座標成分をx、y、zとおいていたのですから、
そのまんま\(\overrightarrow{r}=(x,y,z)\)という形になります。

ですから、考察対象のベクトル場\(\overrightarrow{F}\)を成分で表すと次のようになります。

$$\overrightarrow{F}= \large{ \frac{\overrightarrow{r}} { (x^2+y^2+z^2)^{\frac{3}{2}} } }\large{ = \left( \frac{x}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{y}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{z}{(x^2+y^2+z^2)^{\frac{3}{2}}} \right)} $$

これで、ベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を計算できる「はず」ですね。
面倒ですが丁寧に計算すると前述の結果を得るのです。

1つずつ、成分を偏微分してみると次のようになります。
商の微分公式と、合成関数の微分公式(※)とを使って丁寧に微分します。

(※この場合は、x、y、zは互いに独立変数ですから、合成関数の公式は偏微分に関する合成関数の公式ではなく、通常の1変数関数の合成関数の微分公式を使います。仮に、x=g(y,z) のように表せるのであれば偏微分の合成関数の公式を使う必要があります。ここでの場合は、そうではなくて3変数が互いに独立であるという事です。)

では計算です。
商の微分公式そのままであり、分母は2乗されて、分子は引き算の形で2つ項ができます。その際の微分する時に(通常の)合成関数の微分公式を使っています。

$$\large{ \frac{\partial}{\partial x} \frac{x}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- x\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2x } {(x^2+y^2+z^2)^3} }$$

yとzについても同様です。

$$\large{ \frac{\partial}{\partial y} \frac{y}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- y\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2y } {(x^2+y^2+z^2)^3} }$$

$$\large{ \frac{\partial}{\partial z} \frac{z}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- z\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2z } {(x^2+y^2+z^2)^3} }$$

これらを加え合わせたものが div \(\overrightarrow{F}\)であり、
(x+y+z1/2で因数分解できる事に注意すると次のようになります。

$$\mathrm{div}\overrightarrow{F}=\frac{ 3(x^2+y^2+z^2)^ {\large{\frac{3}{2}}} -3x^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} -3y^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} -3z^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} } {(x^2+y^2+z^2)^3}$$

$$=\frac{(x^2+y^2+z^2)^{\large{\frac{1}{2}}}(3x^2+3y^2+3z^2-3x^2-3y^2-3z^2)}{(x^2+y^2+z^2)^3}=0【計算おわり】$$

このように、計算は結構面倒ですが「結果は0」という事になります

さてここで、ガウスの発散定理によればベクトル場の法線面積分は「ベクトル場の『発散』の体積分に等しい」という事でした。
--しかし、となると「計算結果が0になる関数」の積分ですから、これは必ず0になると言えます。(通常の積分でも体積分でもこの点については同じ事が言えます。)
それで証明が完了するのです。

$$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_V\mathrm{div}\frac{\overrightarrow{r}}{r^3}dv【∵ガウスの発散定理】$$

$$=\int_V\hspace{3pt}0\hspace{3pt}dv=0【証明おわり】$$

ただしこの結果は、「原点が閉曲面の外側にある」場合の話である事には注意が必要です。
閉曲面上にある場合や、閉曲面の内側にある場合には別の結果になるのです。

②原点が閉曲面の「曲面上」にある場合

原点が閉曲面上にある場合でも、ベクトル場の発散 div \(\overrightarrow{F}\) を計算すると「0」になるという事は同じです。

しかし、1つ問題があって、このベクトル場\(\overrightarrow{F}\)は、「原点 (0,0,0)【つまりx=y=z=0の時】で定義できない」という事があります。

従って、関数を定義できないその点が閉曲面上にあるという事は、そもそも法線面積分を考える閉曲面Sについて、通常の閉曲面とは違うものを考える必要があります。

具体的には、原点が乗っている点を除いたものをそもそも考えなければならず、もとの閉曲面から原点付近のわずかな領域を除いた部分を改めて閉曲面Sとします。

ただし、この時に除かれる「原点を含む領域」は、その大きさに関わらず、残った閉曲面における法線面積分の値は一定で\(2\pi\)になる
 というのが公式のより詳細な内容です。
つまり、そのような領域の大きさを0にする極限においても値は一定で\(2\pi\)になる、という事です。

$$★この議論は、もちろんベクトル場が F=\frac{\overrightarrow{r}}{r^3}である前提のもとでの話です。$$

この時に、原点を含む「面だけ除く」事はできなくて、体積を持った領域ごと除く事になります。そして、その領域の形状は「半球」とするのがポイントなのですが、これには理由が2つあります。(上手にきれいな半球を繰り抜けるかどうかは、閉曲面を多面体に近似することで可能になります。)

  1. 球面であれば、曲面に対する法線とベクトル場の方向が同一直線上に重なり、法線面積分を直接計算できる。
  2. どのような形状の領域でも、除いた部分の法線面積分はある一定値である事が示される。つまり、球面で計算した時の値と他の形状で計算した時の値は必ず同じである。

2番目の理由についての根拠は、原点を含む領域を境界を共有する形で2つの形状で取り除いてみた時に、新しくできる「閉曲面」(滑らかでない部分はありますが)から見て原点が「外部」にある事によります。この時に、考えているベクトル場のもとでは法線面積分は0になります。
さらに、その新領域が異なる2つの形状に由来するSとSに分けられるとすると、元々考えていた大きな領域Sから見た時の「外側に向かう方向」が、繰り抜いた部分だけを考えてできた閉曲面においては「SとSの片方は『外側向き』でもう片方は『内側向き』」となります。
つまり、ややこしいですが、法線面積分について片方の符号を変えたものを加えた合計が0、結果的には引き算したものが0になります。
――という事は、2つの法線面積分は等しい値(符号も含めて)になる、という事です。

$$★この議論は、もちろんベクトル場が F=\frac{\overrightarrow{r}}{r^3}である前提のもとでの話です。$$

$$\int_{SA}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s} -\int_{SB}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0\Leftrightarrow \int_{SA}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{SB}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}$$

さて、そこで除外する微小領域として半球を考えると、原点を中心にする半球を考えるのですから、半径をρとすると球面の各点でベクトル場の大きさは等しく、1/(ρ)となります。方向については、各点で球面に垂直で外側向きですから、法線との内積は1となり、面積sを変数とする通常の定積分になるのです。

通常は、面積sを変数とする関数というのはすごく考えにくいものなのですが、この場合について言えば半径ρというのは何らかの定数を考えているのであり、変数としての面積sに無関係であるから定数扱いです。従って積分の原始関数は「1次関数s」です。これを、0から\(2\pi\rho^2\)(半球の表面積)まで積分すればよく、結果は\(2\pi\rho^2\)です。

$$\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\frac{1}{\rho^2}\int_{S0}ds=\frac{1}{\rho^2}\left[s\right]^{\large{2\pi\rho^2}}_0=\frac{1}{\rho^2}\cdot 2\pi\rho^2=2\pi$$

こういう結果であり、半径の大きさに関わらず値は一定値という事になります。

さて、さらに元の閉曲面Sから半球Sを繰り抜いて原点の周りだけ少しへこんだ形になった閉曲面を改めてSとします。このSから見ると、原点は外部に存在します。従って、Sに対する法線面積分の値は0です。

しかし他方で、Sに対する法線面積分はSの法線面積分(半球部分除く)と符号を変えたSの法線面積分(半球面)の合計値です。

のほうの符号を変えるのは、原点を中心に半球を単独で考察した時と、元々の大きな閉曲面Sで考えた時の「外側への向き」が逆になってしまうためです。結果的に引き算する形となります。

$$\int_{S1}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0かつ、\int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}-\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{S1}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}$$

$$よって、\int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}-\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0 \Leftrightarrow \int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=2\pi$$

ここで、繰り抜く半円の半径は任意の値でこの事が成立するのでしたから、半球の半径ρ→0の極限でも同じ値であり、その意味においてガウス積分の公式が成立します。

③原点が閉曲面の「内側」にある場合

閉曲面の内部に原点がある場合にも、閉曲面上に原点がある場合と同じ問題が発生します。

法線面積分を考える分には、一見すると「値が無限大になってしまう原点」は積分経路から外れていますが、ガウスの発散定理から法線面積分は体積分で表せる「はず」ですから、
体積分を行う領域内で問題が発生します。

つまり、この場合も定積分を実行するには極限値を考える必要があります。

結論を言うと、本来の全体の領域から「原点を囲む微小な球をくり抜いて除いた」ようなものを領域として考えます。

ガウスの積分において原点で領域を定義できないので、
原点を含む領域を球状に除いて、球の半径を0に近づけた時の極限値として
ガウスの積分の値を計算します。

その原点を囲む球状の領域では、上記の場合と同じ考え方により、法線面積分は球の半径にかかわらず一定値になります。この場合の値は\(4\pi\)です。そこで、半径を限りなく小さくしてもその値として計算できるので、極限値として最初に考えていたガウスの積分の値も\(4\pi\)になる、という事です。

原点が想定している領域の表面上にある時との2倍の差は、「球」と「半球」の違いであるという事になるわけです。