面積要素の変換公式

積分変数としての面積要素dSと、x、y、zで積分した時に使うdx、dy、dzを偏微分を使って結びつける公式について説明します。
積分変数に関する公式ですからもちろん積分に関係しますが、ベクトルとも関連します。
この公式はやや特殊で、使われる場面はベクトル解析の分野のごく一部分に限定されるとも言えます。しかし特定の定理の証明・考察において重要である場合があるので、詳しく解説しておきます。

■より初歩的な内容(内部リンク):

面積要素とは

法線面積分においては曲面上の微小な領域に対する法線ベクトルを考えて、その法線ベクトルの大きさはその微小領域の面積であるとします。
そして、その面積にプラスマイナスの符号があると考えた量を特に面積要素(あるいは面積元素)と呼ぶ事があります。面積要素はdSなどの記号で書かれます。

面積元素dSを大きさとする法線ベクトル(面積要素ベクトル)

式で書くと次のようになります。
各成分は対象の曲面上の微小領域をyz平面、xz平面、xy平面へ射影した領域の面積です。$$d\overrightarrow{S}=(ds_x,ds_y,ds_z)$$ この法線ベクトル\(d\overrightarrow{S}\) の事を特に指して「面積要素ベクトル」と呼ぶ事もあります。
面積要素の絶対値は、このベクトルの大きさに等しいものとします。 \(|dS|=|d\overrightarrow{S}|\)

※「面積ベクトル」という用語は、曲面全体に対する単位ベクトルの法線面積分の事を指す場合があります。
また、法線面積分を考える時には「ベクトル場と単位法線ベクトルの内積を考え、それに面積要素を乗じるという形の形で書く」という形式もあります。ここで言う単位法線ベクトルとは「大きさが1」の法線ベクトルという事です。

法線面積分の計算を進める時には、内積を計算する形で成分ごとに分解した積分を考える事がありますが、その時に考える「スカラー場に対して、yz平面、xz平面、xy平面内の領域の面積要素を積分変数とする」形の積分を単に「面積分」と呼ぶ事もあります。

変換の公式

面積要素dSと、面積要素ベクトルの成分ds、ds、dsの間には実は変換の公式が存在し、それは曲面を表す関数に対する偏微分を使って表されます。

今、曲面を表す関数としてzがz=g(x,y)のような形で表されているとします。(これはベクトル場の成分を表す関数ではなくて、曲面を表す式です。)

面積要素ベクトルの成分dsx, dsy, dszと面積要素dSの変換公式

$$dS=ds_z\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2}$$ $$ds_y=-\frac{\partial z}{\partial y}ds_z$$ $$ds_x=-\frac{\partial z}{\partial x}ds_z$$ この公式を使う時には、曲面を多面体とみなした時に微小な三角形(あるいは平行四辺形)の2辺がそれぞれxz平面上およびyz平面上にあるような分割を考えています。 (法線面積分および面積分の値は分割の仕方には依存しません。)

上記の式を組み合わせて、dsとdsについても面積要素dSとの関係式を作る事が可能です。

これらは決して使いやすい形の公式とは言えないかとは思いますが、ベクトル解析における特定の定理の証明等で使える場合もあります。

法線面積分を行う時の積分をする時の分割の仕方は任意ですが、
偏微分を使った面積要素の変換公式を考える時には
座標軸に平行な直線で区切った長方形の分割を行っています。
曲線上になっている部分は折れ線で近似して直角三角形の分割として考えます。

◆! 注意点・・・
これらの公式はあくまで
「法線面積分およびスカラー場に対する面積分における、
積分変数としての面積要素に対して成立する変換公式」であり、
通常の二重積分等での積分変数の変換(極座標変換など)では使う事はできません。
二重積分や多重積分で積分変数の変換を行う時には、関数行列式を使った変換が必要です。

また、ds/dS,ds/dS,ds/dSは図形的に余弦とみなす事ができて、方向余弦とも呼ばれます。(方向余弦は面積要素ベクトルに対してだけでなく、ベクトル一般に対して考える事ができます。)これらの面積要素ベクトルの方向余弦は、分割の方法を合わせるという前提のもとで上記の公式中の係数で表す事ができます。

余弦とは三角関数の「コーサイン」「cos」の事です。

面積要素ベクトルの方向余弦を偏微分で表す方法

角度は鋭角の場合であるとします。 $$\frac{ds_x}{dS}=\cos\alpha,\hspace{10pt}\frac{ds_y}{dS}=\cos\beta,\hspace{10pt}\frac{ds_z}{dS}=\cos\gamma \hspace{10pt}と置いた時、$$ (※これらは導関数の記号ではなく、普通の「割り算」あるいは「比」を考えています。) $$\cos\alpha=-\Large{\frac{\frac{\partial z}{\partial x}}{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2} }}$$ $$\cos\beta=-\Large{ \frac{\frac{\partial z}{\partial y}}{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+ \left(\frac{\partial z}{\partial y}\right)^2} } }$$ $$\cos\gamma=\frac{1}{\Large{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2} }}$$ 曲面の分割は、前述の変換の公式を適用する時と同じであるとしています。
また、\(dS\cos\alpha=ds_x\), \(dS\cos\beta=ds_y\), \(dS\cos\gamma=ds_z\) でもあります。
角度が鈍角の場合にはプラスマイナスの符号が変わります。

公式の導出および証明

上記の公式の証明においてはベクトル場の事は考えず、曲面の事だけを考えます。

面積要素と、面積要素ベクトルの第3成分との関係式の証明

曲面Sの領域の分割が、xy平面への射影を考えた時に辺がx軸とy軸に平行な長方形になるように考えます。曲面の外周部分に関しては長方形を対角線で区切った直角三角形を考えます。

この時に分割された各領域は、1つの共有点を始点(原点と考えます)に持つxz平面上のベクトルと、yz平面上のベクトルを2辺として構成されていると考える事ができます。

それらの2つのベクトルを \(\overrightarrow{a}\) および \(\overrightarrow{b}\) とおきます。
(位置関係は、dxとdyの符号がともにプラスである時に外積ベクトルがz軸のプラス方向を向くようにします。その側が面の表側で、面積要素ベクトルが出る側として考えます。)
今、曲面の各点のz座標はz=g(x,y)のような関数で表せる事に注意すると、
2つのベクトルはzに対するxとyでの偏微分を使って表せます。
\(\overrightarrow{a}\) の(終点の)x座標をdxとして、\(\overrightarrow{b}\) のy座標をdyとすると、次のように書けます。

$$\overrightarrow{a}=\left(dx,0,\frac{\partial z}{\partial x}dx\right),\hspace{15pt}\overrightarrow{b}=\left(0,dy,\frac{\partial z}{\partial x}dy\right)$$

2つのベクトルはそれぞれx軸上およびy軸上にあります。
そのため、1つのベクトルはy成分が0で、もう片方のベクトルはx成分が0です。
曲面を表すz=g(x,y)に対する偏微分は、図形的には座標軸に平行な直線上での近似一次式の傾きを意味します。

この時にこれら2つのベクトルにより構成される平行四辺形の面積(|dS|に等しい)は、公式を使って次のように表されます。対角線で区切った三角形の面積ならその半分になります。

$$dS=\sqrt{|\overrightarrow{a}|^2|\overrightarrow{b}|^2-(\overrightarrow{a}\cdot\overrightarrow{b})^2}$$

$$|ds|=\sqrt{ \left\{dx^2+\left(\frac{\partial z}{\partial x}\right)^2dx^2\right\} \left\{dy^2+\left(\frac{\partial z}{\partial y}\right)^2dy^2\right\} -\left(\frac{\partial z}{\partial x}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2dx^2dy^2 }$$

【平方根の中の2つの項がちょうど同じ値で引き算されて0になります。】

$$=\sqrt{dx^2dy^2+dx^2dy^2\left(\frac{\partial z}{\partial y}\right)^2+dx^2dy^2\left(\frac{\partial z}{\partial x}\right)^2}$$

ここで、平方根の中のdxdyについて2乗した形が共通してどの項にもあるのでdxdyを平方根の外に出す事もできますが、敢えてひとまずこのままにしておきます。

面積要素ベクトルの第3成分(z成分)のdsの絶対値は、微小領域をxy平面に射影した領域の面積になります。【その証明は外積ベクトルの定義からの計算と、平面上のベクトルを使った平行四辺形の面積公式から行います。】

今、微小領域をxy平面に射影すると長方形になるように分割を考えています。
よって、|ds| = |dxdy| と書けます。【外積ベクトルのz成分を考えても同じ事です。】
すると ds = dxdy という事にもなるので、
これをさきほどの計算式に代入します。

$$|dS|=\sqrt{ds_z^2+ds_z^2\left(\frac{\partial z}{\partial y}\right)^2+ds_z^2\left(\frac{\partial z}{\partial x}\right)^2}$$

ここで、dsはプラスとマイナスの両方の符号の場合があり得ます。これは図形的には、実は単純な話です。面積要素ベクトルがz軸のプラス方向側に向いていればそのz成分であるdsの符号もプラスで、逆に面積要素ベクトルがz軸のマイナス方向側に向いていればそのz成分であるdsの符号もマイナスという事になります。

すると、上式ではdsを平方根の外に出す事ができますが、それが式の右辺のプラスマイナスの符号を決める唯一の量になります。よって、面積要素dSの符号はdsによって決定する事になります。式で書けば次のようになります。これで証明完了です。

$$dS=ds_z\sqrt{1+\left(\frac{\partial z}{\partial y}\right)^2+\left(\frac{\partial z}{\partial x}\right)^2}$$

ここでの符号の問題についてはdxとdyを基準に考える事もできます。
外積ベクトル \(\overrightarrow{a}\times \overrightarrow{b}\) が面積要素ベクトルに等しいと考えると、
そのz成分はds=dxdyー0・0=dxdyで、符号まで一致している事になります。
この時、仮にdxとdyのどちらかがマイナスになると位置関係的にも、
外積ベクトル \(\overrightarrow{a}\times \overrightarrow{b}\) はz軸のマイナス側を向く事になります。

もともと符号はプラスと考えた dx と dy の符号を入れ替えた場合の3パターン。
片側だけ符号を反転させた場合のみ、外積ベクトルの方向も反転します。
この外積ベクトルが面積要素ベクトルに等しいと考えれば、
面積要素ベクトルの第3成分とdxdyの符号が一致するようになります。

面積要素ベクトルの第1成分と第2成分についての式の証明

次に、面積要素ベクトルの第1成分(x成分)と第2成分についての式も考えます。

それらを表すには外積ベクトルとして成分を計算したほうが簡単で、次のようになります。

$$再度記すと\overrightarrow{a}=\left(dx,0,\frac{\partial z}{\partial x}dx\right),\hspace{15pt}\overrightarrow{b}=\left(0,dy,\frac{\partial z}{\partial x}dy\right)としているので、$$

$$ds_x=0\cdot\frac{\partial z}{\partial y}dy- \frac{\partial z}{\partial x}dx\cdot dy=-dxdy\frac{\partial z}{\partial x}$$

ここで使っている公式は次のものです。 $$\overrightarrow{a}=(a_1,a_2,a_3),\hspace{10pt}\overrightarrow{b}=(b_1,b_2,b_3)\hspace{10pt}のもとで$$ $$\overrightarrow{a}\times \overrightarrow{b}=(a_2b_3-a_3b_2,\hspace{5pt}a_3b_1-a_1b_3,\hspace{5pt}a_1b_2-a_2b_1)$$ 外積ベクトルの各成分の絶対値は、2つのベクトルを2辺とする平行四辺形を
yz平面、xz平面、xy平面に射影した領域(それも平行四辺形。この記事内での例では長方形)の面積に等しくなっています。

ここで、先ほどの証明の最後で触れましたが面積要素ベクトルを外積ベクトルとして表した場合には符号まで一致してds=dxdyと表す事ができるので、それをそのまま代入する事ができます。すると次のようになって、示すべき式が得られます。

$$ds_x=-\frac{\partial z}{\partial x}ds_z$$

面積要素ベクトルの第2成分についても同様に、
外積ベクトルの成分として計算すると次のように示すべき式を得ます。

$$ds_y=\frac{\partial z}{\partial x}dx\cdot 0\hspace{3pt} – dx\cdot\frac{\partial z}{\partial y}dy=-dxdy\frac{\partial z}{\partial y}$$

$$よって、ds_y=-\frac{\partial z}{\partial y}ds_z$$

この面積要素の変換公式は、ストークスの定理に対する証明の1つの過程で使用する事ができます。

ベクトルの相等:自由ベクトルと束縛ベクトル…【2つのベクトルが等しいとはどういう事か?】

「同じ向きで同じ大きさのベクトル」を、
「始点を基準とした向き」と「大きさ」を変えずに移動させたベクトルの扱いについて説明します。

一般的に、原則的な扱い方は大体決まっているのですが、
書籍等では少し曖昧に説明されている場合もあるので詳しく説明をします。

ベクトルの相等
・・同じベクトルと異なるベクトルの違いは?

ベクトルの始点と終点を明示した表記方法では、\(\overrightarrow{AB}\) と \(\overrightarrow{BA}\) は異なるベクトルになります。

この事は図形的に見てもそのように言えて、
「大きさは同じ」で「向きが異なる(同一直線上で逆方向)」という異なる2つのベクトルなのです。

さて、ここで問題にしてみたいものがあります。

2つのベクトルが、次のような条件を両方満たす場合です。

  • 「向きと大きさの両方が同じ」
  • 「しかし、始点と終点が異なる」

例えば、平行線の関係にある異なる線上の2つのベクトルで、大きさは同じで向いている方向も同じという場合です。
それらは、異なるベクトルと考えるべきでしょうか?

図形における線分であれば、異なる端点を持つ線分ABと線分CDは、必ず異なるものとして考えます。そうでないと、図形的に正しい議論ができないのです。

ベクトルは「大きさ」と「向き」を持つ量として考えたはずですが、
それらは同じで始点と終点が異なる場合は?

では、ベクトルの場合はどうでしょうか。同様に考えるべきでしょうか?

「2つの異なるベクトルが等しい事」を指して数学ではベクトルの相等と呼ぶ事があります。
ここでは、ベクトルの相等が始点と終点の位置に関係するか?
それともそれらには無関係で向きと大きさだけに依存するものか?
という事を考えています。

実のところ、それに対する答えには2つの立場があって扱いが異なるのです。
ただし数学上の考察を含めて一般的に、何の断りもなければ原則としてどちらの立場で考える事が普通であると言う事はできます。

基本的にはベクトルは「自由ベクトル」

ベクトルの場合は、向きと大きさを持つ「量」として考えている事もあって、
実は「向きと大きさの両方が同じ」であれば、「始点と終点が異なる」場合でも同じベクトルであると考えるのです。
特に断り書きが無ければそれが基本的な考え方になります。
ただしそのように考えるベクトルである事を強調して、特に自由ベクトルと呼ぶ事もあります。

自由ベクトルは、向きと大きさを保ったまま自由に動かす事ができます。
(そのような移動を「平行移動」と言います。)

普通、数学的な考察の中で何のことわりもなく「ベクトル」と言ったらそれは自由ベクトルを指しています。つまり向きと大きさを保ったまま始点と終点を変更しても、移動前と移動後のベクトルは等号で結べるという事です。

自由ベクトルとして考える場合には、ベクトルの相等は向きと大きさにだけ依存し、始点と終点の位置には依存しないと言う事もできます。

ベクトルの相等についての基本的な考え方
  • 原則として、何も断り書きが無ければベクトルは自由ベクトルとして扱う。
  • ベクトルの相等は「向き」と「大きさ」だけで決まり、
    始点(および終点)が異なっていても同一のベクトルとみなし、等号で結ぶ事ができる。

例えば「始点が同一である」力ベクトルは合成する事ができて、数式的にはベクトルの合成(足し算と引き算)で考える事になります。すこの時に、片方のベクトルを平行移動させて平行四辺形を作って合成を考えます。つまりその時にはそのベクトルを自由ベクトルとして考えているわけです。

ベクトルの加算で片方のベクトルを平行移動して「平行四辺形」を作る図形的な考察は、ベクトルを自由ベクトルとみなしている場合の代表的な例の1つです。

ベクトルに関して数学的な一般論として考察や計算を考える時には、
基本的にはベクトルは自由ベクトルとして考えます。

始点の位置を問題にする「束縛ベクトル」

それに対して、状況によっては始点が特定の場所に固定されていると考える必要がある場合があります。つまり、始点が異なれば別のベクトルとみなす必要がある場合です。そのように考えるベクトルは、特に束縛ベクトルと呼ばれる事があります。

例えば現実に2本の綱があったとしましょう。
それらを2人の人が引けば2つの力ベクトルを考える事ができます。
しかしそれらの力ベクトルの始点(力の作用点)は異なります。
そういった場合に、仮に2つの力ベクトルを平行移動でぴたりと重ね合わせる事ができたとしても、それらを「同一の力」と評するには違和感があります。
その違和感は、ベクトルの始点が異なっている事に由来するのです。

力が作用している点が異なれば、大きさと始点からの向きが等しいベクトルであっても別々の力であり、同一の力ベクトルとは考えない事が普通です。
そのような場合でも、力ベクトルの大きさに関して F1 = F2 のように書けます。

束縛ベクトルを考える場合には、
必ずしもベクトルの始点が「同一の点」ではなくてもよい事もあります。
例えば「同一の線上」「同一の面上」であればよいとする事もあるのです。

いずれにしても、ベクトルの始点が具体的にどこにあるのか範囲が限定されているベクトルが束縛ベクトルであり、ベクトルの相等が「向き」と「大きさ」と「ベクトルの始点が存在する位置」に依存するわけです。

ただし、考察対象のベクトルが自由ベクトルであるか束縛ベクトルであるかの区別は、数学的というよりは物理的な解釈により判断する事が普通であると思われます。
例えば異なる物体に作用している複数の力ベクトルであれば、「別々の物に加わっている別々の力なのだから、その時点でベクトルを等号としては結べる事はない」と解釈しても何の支障もありません。

具体的な状況下で複数の束縛ベクトルを考えた場合でも、その時に考えている始点を基準にして限られた範囲で自由ベクトルのように考える事ができます。例えば、ある力の作用点に対して重力と摩擦力が働いている場合には、元々ベクトルの始点は同一である事は大前提にしたうえで、ベクトルを平行移動させてベクトルの「平行四辺形」を考えて力ベクトルを合成するといった計算ができます。

自由ベクトルは始点が原点である場合を基準にできる

始点を原点としてベクトルを考える場合にはベクトルは座標で表すか、終点が分かる文字で代表させる表記方法ができます。
この時には始点が皆共通ですから、向きと大きさが一致すれば終点も必ず一致します。

さてそこで、自由ベクトルとして考えているベクトルでは向きと大きさを保てば自由に移動させて構わないので、始点を原点にそろえる事もできるわけです。

この考え方のもとでは、
平面上あるいは空間内の任意のベクトルは座標を使って表す事ができる事になります。

例えば次の2つのベクトルを考えます。

  • 原点を始点とした(1,1)というベクトル
  • (2,1)を始点としてx方向とy方向にそれぞれ1ずつ進み、
    (3,2)に向かうベクトル

これらは、自由ベクトルとしては全く同一のベクトルとしてみなせるのです。

☆ベクトルの減算を使うと、
2番目のベクトルは(3,2)-(2,1)=(1,1)と計算して表す事ができ、
確かに1番目のベクトル(1,1)に一致する事を見れます。

ここでの例で、点(2,1)をAとして、点(3,2)をBとすれば
\(\overrightarrow{AB}=(1,1)\) と書く事ができます。

つまりベクトルを自由ベクトルとして考える前提のもとでは、
\(\overrightarrow{AB}\) のような始点と終点を明記した形のベクトルも、
原点を基準とした座標成分による表記方法と、数学的に等号で結べるという事を意味するのです。
この時には、平面上あるいは空間内の具体的な2点間のベクトルである事を明示しつつ、
「向きと大きさは原点を基準とした時の(1,1)というベクトルに等しい」という事を表現しているとも解釈できます。

今回のまとめ
  • 基本的にはベクトルは自由ベクトルとして考えて、
    「向き」と「大きさ」が等しければ、始点の位置によらずに同じベクトルであると考えて等号で結ぶ事ができる。
  • 特に断りが無ければ、数学的な計算や考察ではベクトルは自由ベクトルであると考える。
  • ただし物理学等での個別の考察を行っている時には、
    始点が限定された範囲内にないと、向きと大きさが等しくても同一のベクトルとはみなせない束縛ベクトルとして実質的に考える事もある。
  • ベクトルが自由ベクトルであれば、
    始点と終点を明記する表記と原点を基準にした表記は同一視する事ができ、
    等号で結ぶ事もできる。

スカラー場に対する線積分【定義と積分の仕方】

線積分という言葉は、ベクトル場に対する接線線積分と、スカラー場に対する線積分の両方に対して使われます。ここでは、スカラー場に対する線積分についての定義と積分の考え方について説明します。

接線線積分と同様に、スカラー場に対する線積分も電磁気学等での理論計算に使われます。

接線線積分の内積計算を行う過程で、
座標変数であるx、y、zを積分変数とする線積分を考える事もあります。

基本的な考え方

スカラー場 f(x, y, z) に対する「線積分」の基本的な考え方は、次のようになります。

基本的な考え方:スカラー場に対する「線積分」
  • 積分の対象となる関数がスカラー場(座標成分を変数とするスカラー関数)
  • 積分範囲が平面上または空間内の曲線上の経路

積分経路の表記は、ベクトル場に対する接線線積分と同じで、曲線上の2点PとQを決めてPQと書いたり、経路をCなどの名称で表したりします。(その書き方は、積分変数が座標変数が弧長の場合でも座標変数の場合でも、どちらでも同じです。) $$積分変数が弧長の場合:\int_{PQ}f(x,y,z)dl$$ $$積分変数がxの場合:\int_{PQ}f(x,y,z)dx$$ $$積分変数がyの場合:\int_{PQ}f(x,y,z)dy$$ $$積分変数がzの場合:\int_{PQ}f(x,y,z)dz$$

積分変数となる変数は弧長(曲線の長さ)であるとする場合と、
x,y,zの座標成分である場合があります。
どちらの場合でも線積分という語が使われる事が一般的です。
ただし、後述しますように両者で積分方向と積分の符号に関する規定に相違点があります。

積分対象の関数がスカラー場の場合には、
積分変数が弧長の場合と、座標変数x,y,zの場合の両方に対して「線積分」が定義できます。

積分変数が弧長の場合

積分変数が弧長である場合には、積分経路が曲線上の点Pから点Qまでの経路である時に、点Pにおいて弧長が0、点Qにおいてある長さLであるとして積分を行います。

弧長とは「曲線の長さ」の事です。基本的に、折れ線で近似した時の極限値を指しています。

$$\int_{PQ}f(x,y,z)dl=\int_0^Lf(x,y,z)dl$$

ただし、右辺のように表して具体的に原始関数を探して計算するといった場合には、後述するようにスカラー場は \(l\) の関数の形になっている必要があります。

弧長を表す文字としては、sやtが使われる事もあります。

弧長(曲線の長さ)を積分変数として線積分を考える事ができます。
折れ線で近似をして合計し、極限を考えて積分するという考え方です。

この時に弧長は点Pから測って決めているので、
同じスカラー場に対して点Pからではなくて
「点Qから線積分を行う場合」には、積分全体の符号が変わります。
積分の向きと積分全体の符号の関係の考え方は、接線線積分の場合と同様になっています。

$$\int_{QP}f(x,y,z)dl=\int_L^0A(x,y,z)dl=-\int_0^Lf(x,y,z)dl=-\int_{PQ}f(x,y,z)dl$$

このように書けるわけですが、
線積分を具体的な定積分として計算する場合にはx、y、zが弧長を変数とした関数で表されている事が必要な場合が多いです。
すなわち、指定された曲線上の経路では特定の点からの弧長によって点が一意に確定するわけですから、具体的に容易に書けるかは別問題として、理論上は座標変数を弧長の1変数関数として表せるはずであるという事です。

$$x=x(l), \hspace{5pt}y=y(l),\hspace{5pt}z=z(l)\hspace{5pt}であれば$$

$$f(x,y,z)=f(x(l),y(l),z(l))となり、$$

$$\int_{PQ}f(x,y,z)dl=\int_0^Lf(x(l),y(l),z(l))dlとして計算可能になる場合もあります。$$

積分変数が座標変数の場合

積分変数が座標変数x、y、zの場合でも、曲線を経路とする積分を指して「線積分」と呼びます。
この場合には、弧長を変数とする場合やベクトル場に対する接線線積分とは少し考え方が変わります。

まず、積分変数がxの場合を考えてみます。yやzに対しても考え方は同じです。

積分の元々の和としての定義を考えてみると、積分変数をxとするという事は「対象となる関数の値と分割された区間の長さΔxとの積」を合計して極限値をとるはずであり、実際その場合の線積分もそのように定義されるのです。

つまり、曲線上の各点において「曲線の分割された(微小な)経路分のx軸への射影」を考えてスカラー場との積を合計して積分するといった形になります。

$$積分変数がxの場合の線積分の表記:\int_{PQ}f(x,y,z)dx$$

ただし、具体的にxに関する原始関数を探して定積分したい場合には、yとzがxだけの関数で表されている必要があります。

$$具体的な計算をするには、y=y(x),\hspace{5pt}z=z(x)\hspace{5pt}として表されて、$$

$$\int_{PQ}f(x,y(x),z(x))dxの形にする必要があります。$$

◆特定の曲線上の点という条件がある事によって、このようなxだけで表されるy=y(x),z=z(x)のような関数は必ず、存在はします。ただし、そのような関数が簡単な形で書けるかどうかは別の問題になります。特定の曲線上の点を考えるという条件のもとで、x、y、zは独立な変数ではなく、互いに従属の関係にあります。

この時に、曲線の形状によっては単純に1つの積分区間でのxによる定積分としては書けない場合があり、積分をいくつかに分割する必要がある場合があります。

例えば円等の閉曲線では、ある所まではxが増加するように曲線が進んでいき、あるところで逆にxが減少する方向に曲がる事になります。xが減少する方向に積分していく場合には積分の符号も逆向きになりますが、それは通常の1変数の定積分の考え方で符号を考えればよい事になります。

その場合には例えばPQの間にいくつかの適切な点、
例えばAやBを決めて次のように積分を分割します。

$$\int_{PQ}f(x,y,z)dx=\int_{PA}f(x,y,z)dx+\int_{AB}f(x,y,z)dx+\int_{BQ}f(x,y,z)dx$$

この時に、例えばP→Aまではxが増加する方向で、A→Bはxが減少する方向、B→Qで再びxが増加する方向であるなら、yとzがxの関数として表されている前提で、各点のx座標を使って線積分は次のようにも書けます。

積分変数をx、y、z等の座標変数とする場合で具体的な定積分をしようとする時には、
積分する向きと符号に気を付ける必要がある場合もあります。

具体例としてPのx座標が0、Aのx座標が3、Bのx座標が1、Qのx座標が5である場合で線積分を書いてみます。

$$\int_{PQ}f(x,y,z)dx=\int_0^3f(x,y,z)dx+\int_3^1f(x,y,z)dx+\int_1^5f(x,y,z)dx$$

この例の右辺の2項目の定積分は、通常のxが増える方向へのx=1からx=3までの定積分とは符号が逆向きになっているわけです。

$$\int_3^1f(x)dx=-\int_1^3f(x)dx\hspace{5pt}です。$$

これらの符号の扱いについては、分割された区間の(微小な)長さΔxについて、プラスとマイナスの符号を持っていると解釈して定義しておく方法も存在します。

弧長と座標成分の、余弦を使った積分変数の変換

曲線上で積分する方向(弧長が0から何かの値Lまで伸びる方向)を決めたうえで、
「曲線上の各点の接線ベクトルと座標軸のなす角\(\theta\)」の余弦を考えると、
弧長と座標変数との関係を余弦で結ぶ事ができます。

$$角度を\theta として、例えばdx=ds\cos\theta$$

考えているこの角度\(\theta\)は一般的に当然一定値ではなくて曲線上の位置によって異なりますから、
それを明確にするなら例えば \(\theta (l)\) のように書くことになります。

このような考え方は、
積分変数を「座標成分から弧長に変換する」ような場合に使う事になります。

$$例えば、\int_{PQ}f(x,y,z)dx=\int_{PQ}f(x,y,z)\cos(\theta (l))ds$$

この時に、xで線積分するのであれば、曲線の形状によっては
通常のxが増加する向きでの積分に対して符号を入れ替える必要も出てくるわけですが、
弧長を積分変数とする場合には、
点P→点Qに向かう経路である限り一貫して弧長が増加していく方向で積分が行われます。
そこで、上記の余弦を乗じる事によって符号も一致するように調整されるという事になるわけです。

x、y、zを積分変数とするスカラー場に対する線積分は、ベクトル場に対する接線線積分のように内積を計算する事はありませんが、弧長を変数とする場合のスカラー場の線積分からの変換と考える場合には分割した積分の符号の扱いに関しては内積の符号の扱いと同じ考え方をしています。

接線ベクトルと軸のなす角を使った余弦 cos Θによって、
積分変数としての弧長と座標変数の関係を考える事もできます。
この時の余弦の取り方は、内積の計算に似ています。
この考え方のもとでスカラー場に対する2つの線積分の定義の、積分の符号の考え方の整合性が取れます。

複素数の極形式(極表示)と偏角

複素数の極形式(あるいは「極表示」)の定義と計算方法を説明します。これは三角関数と複素数の密接な関係を表すもので、複素数を平面図形的に扱える根拠ともなっています。

考え方の基本は、複素数の定義と、xy平面上の極座標の考え方を組み合わせるというものになります。それによって、複素数の乗法と除法(掛け算と割り算)には、独特の性質を持つ事が分かるようになります。

BGM:MUSMUS CV:CeVIOさとうささら

複素数の極形式とは?三角関数と複素数の密接な関係

複素数を三角関数で表現したものを複素数の極形式あるいは極表示と呼びます。じつはこれは、複素関数論や物理学等で、複素数を使う場合に本質的に重要になるのです。

複素数を次のように、三角関数を使った形で表したものを複素数の極形式と言います。

複素数の「極形式」

$$z=a+biの「極形式」:z=|z|(\cos \theta + i\sin \theta)$$ $$\cos \theta=\frac{a}{|z|}=\frac{a}{\sqrt{a^2+b^2}}\hspace{15pt}\sin \theta=\frac{b}{|z|}=\frac{b}{\sqrt{a^2+b^2}}$$

$$複素数の絶対値 |z| を r で表して、z=r(\cos \theta + i\sin \theta)の形式でもよく書かれます。$$

式だけ見ると唐突で複雑に見えるかもしれませんが、
じつはこれは図形的に理解してから式の意味を整理すると分かりやすいのです。

複素数の実部を直交座標のxy平面のx座標とみなし、
複素数の虚部(の実数係数部分)をy座標とみなす考え方があります。
そのように考えた仮想的な平面を複素平面と言い、
その時のx軸に相当する軸を「実軸」、y軸に相当する軸を「虚軸」と呼んだりします。
そのように考えると複素数を図形的に捉える事ができるようになり、考察をさらに進めると複素数の極形式の考え方が出てくるのです。

複素平面と実軸・虚軸
複素数の実部をx座標、虚部の係数をy座標にプロットします。このような「複素平面」において、複素数の絶対値は「原点から複素数を表す点までの距離」という図形的意味を持ちます。

複素平面において、まず「絶対値を原点から複素数までの距離」と考えます。すると、通常のxy平面における極座標の考え方を使えば、複素数の実部と虚部を三角関数を使って表せるはず・・・と考察したものが、上記の複素数の極形式の形なのです。

尚、絶対値を平方根で敢えて書いている部分 \(\cos \theta=\Large{\frac{a}{|z|}=\frac{a}{\sqrt{a^2+b^2}}}\)は、
図で表している部分を式で書いた表現になります。
単純に、直角三角形の1つの辺を斜辺で割った値として余弦や正弦を考えています。
(a や b はマイナスの値もとるので、角度は三角関数に対する一般角を考えている事になります。)

三角関数とみなしている項の部分\(\Large{\frac{a}{|z|}=\frac{a}{\sqrt{a^2+b^2}}}\)と\(\Large{\frac{b}{|z|}=\frac{b}{\sqrt{a^2+b^2}}}\)は、
値が必ず -1 以上 +1 以下です。(2乗してみるとすぐに分かります。)
さらに、これらを2乗して互いを加え合わせたものは1に等しくなります。

$$\left(\frac{a}{|z|}\right)^2+\left(\frac{b}{|z|}\right)^2=\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2+\left(\frac{b}{\sqrt{a^2+b^2}}\right)^2$$

$$=\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}=\frac{a^2+b^2}{a^2+b^2}=1$$

これらの事が三角関数の定義と調和しており、
そのために、三角関数としてみなせるという事なのです。

この時に、三角関数として表すからには「対応する角度が必ず存在する」はずですが、
それは実際に考える事ができるのです。しかもその仮想的な角度は、とりあえず数学上の辻褄合わせで考えておくというだけでなく、複素数の計算理論において重要な量なのです。

複素数に対して新たに導入した三角関数の角度部分として、新たに設定した実数 θ を、
その複素数の偏角と言います。複素数 z に対して arg z と表記する事もあります。
(英語では偏角の事を argument と言います。)

このように、複素数を「複素平面」に図示して考える時もあります。
この時、複素数同士の積は「複素平面上の『回転』」を表します。
複素数の極形式は、複素数の指数関数表示とも直接的に関わります。

複素数の乗法と除法、ド・モアブルの定理

複素数を極形式で表した時に成立する重要公式があり、それは
「2つの複素数の積は、『絶対値の積』と『偏角の和』で計算できる」というものです。

複素数の乗法・積に関して成立する公式

$$u=|u|(\cos \theta + i\sin \theta),\hspace{10pt}w=|w|(\cos \phi + i\sin \phi)のとき、$$ $$uw=|u||w|\{\cos (\theta+\phi)+i\sin (\theta+\phi)\}$$

この公式において絶対値が1で u = w の時、すなわち絶対値が1の複素数のベキ乗(「n乗」の事)を考えた場合の式は特にド・モアブルの定理と呼ばれる事が多いです。

$$ド・モアブルの定理:(\cos\theta+i\sin)^n=\cos(n\theta)+i\sin(n\theta)$$

他方で除法(割り算)の場合には、絶対値の部分を割り算し、割るほうの複素数の偏角にマイナス符号をつけて掛け算します。つまり、除法の場合は偏角部分を引き算する計算になるのです。

複素数の除法・商に関して成立する公式

$$u=|u|(\cos \theta + i\sin \theta),\hspace{10pt}w=|w|(\cos \phi + i\sin \phi)のとき、$$ $$\frac{u}{w}=\frac{|u|}{|w|}\{\cos (\theta-\phi)+i\sin (\theta-\phi)\}$$

この除法に関するほうの公式は、乗法の場合において片方の偏角 φ の符号を入れ替えて -φ に置き換えたものとみなす事もできます。
マイナスの角度というのは、
「平面上で通常の角度の向き(反時計回り方向)に対して『逆の方向(時計回り方向)』」に向けての角度と考える事ができますから、複素平面上の図形的な捉え方においても乗法の場合の公式で統一的に捉える事が可能です。

除法のほうの公式を考えてみると、ド・モアブルの定理においてべき乗の指数であるnは自然数だけではなく、マイナスの整数であってもよい事が分かります。
実数の1は「絶対値が1で偏角が0の複素数」と同じものである事に注意します。

$$例えば、(\cos \theta + i\sin \theta)^{-2}=\frac{1}{(\cos \theta + i\sin \theta)^2}=\frac{1}{\cos(2\theta) + i\sin(2\theta)}$$

$$=\cos (0-2\theta)+i\sin (0-2\theta)=\cos (-2\theta)+i\sin (-2\theta)$$

※さらに考察すると、任意の実数 x に対して (cos Θ + i sinΘ)x=cos (xΘ) + i sin(xΘ) です。

公式の証明

複素数の乗法および除法、ド・モアブルの定理の成立根拠は三角関数の加法定理です。

まず、極形式で表した2つの複素数の積をそのまま計算してみましょう。
すると、実部には余弦に関する加法定理、虚部には正弦に関する加法定理の形が現れるので、加法定理によって変形するとそれがそのまま公式の証明になるのです。

$$uw=|u|(\cos \theta + i\sin \theta)|w|(\cos \phi + i\sin \phi)$$

$$=|u||w|\{ \cos \theta \cos \phi – \sin \theta \sin \phi +i(\sin \phi \cos \theta + \sin \theta \cos \phi )\}$$

$$=|u||w|\{\cos (\theta+\phi)+i\sin (\theta+\phi)\}【証明終り】$$

割り算のほうの公式は、偏角に関しては前述の考え方と同じで片方の符号を入れ替えて、
絶対値部分については |w|=1/|w| の場合を考えればよいことになります。

あるいは、分母の複素数の共役複素数を分母と分子に掛けて直接証明してもよく、
偏角が θ である複素数の共役複素数の偏角は -θ になりますから、掛け算のほうの公式を使えばよい事になります。

$$乗法の公式で\phiを-\phiに置き換えてもいいし、次のようにしても結果は同じです。$$

$$\frac{u}{w}=\frac{u\overline{w}}{w\overline{w}}=\frac{|u||w|(\cos \theta + i\sin \theta)(\cos \phi – i\sin \phi)}{|w|^2}=\frac{|u|}{|w|}\{\cos (\theta-\phi)+i\sin (\theta-\phi)\}$$

さらなる考察

この極形式の観点から言うと、虚数単位 i は

$$i = \cos \frac{\pi}{2}+i\sin \frac{\pi}{2}$$

とも書ける事は重要です。
複素数の乗法に関する公式とも合わせて考えると、ある複素数に対して虚数単位 i を掛ける操作は、
「複素平面上では『90°回転』を意味する」という事が分かります。
物理学や一部の工学では、その分だけ「『位相』を進める」といった表現がされる事もあります。

式で書くと次のようになります。

$$i(\cos\theta+i\sin\theta)=\left(\cos \frac{\pi}{2}+i\sin \frac{\pi}{2}\right)(\cos\theta+i\sin\theta)=\cos\left(\frac{\pi}{2}+\theta\right)+i\sin\left(\frac{\pi}{2}+\theta\right)$$

公式の証明の箇所でも触れましたが、
ある複素数の共役複素数は、偏角の符号を入れ替えたものになります。
その事は図形的に見て確認する事もできますが、
虚部の符号を入れ替える事と、cos(-Θ)=cos および sin(-Θ)=-sinΘ の関係から見る事もできます。

$$z=\cos\theta +i\sin\thetaに対して、\overline{z}=\cos\theta -i\sin\theta=\cos(-\theta) +i\sin(-\theta)$$

また、極形式で書いた場合でも「ある複素数と共役複素数の積は、絶対値の2乗になる」という事が確かに成立する事が分かります。ある複素数とその共役複素数は、絶対値は同じである事に注意すると次のような計算になります。

$$z\overline{z}=|z|(\cos\theta+i\sin\theta)\cdot|z|\{\cos(-\theta)+i\sin(-\theta)\}$$

$$=|z|^2\{\cos(\theta-\theta)+i\sin(\theta-\theta)\}=|z|^2(\cos 0+i\sin 0)=|z|^2$$

偏角と回転・反転
虚数単位 i を2乗すると-1になるという計算や、虚部の符号を入れ替えた共役複素数についても、極形式の偏角の観点から複素平面上での図形的に解釈が可能です。

さらに、複素数の極形式を表す別の表記方法として複素数の「指数関数表示」というものがあります。これは「オイラーの式」と呼ばれる事もあります。

$$複素数の指数関数表示:e^{ix}=\cos x +i\sin x$$

e は自然対数の底(ネイピア定数)です。このような複素数が混じった指数関数においても、微積分を含めて通常の指数関数と同様の計算が成立します。複素数の乗法と除法の公式を考えると、指数関数の極形式における乗法や除法の計算と実は調和しています。

例えば指数関数の計算規則に従うと複素数の積は次のようになります。

$$e^{ix}e^{iy}=e^{i(x+y)}$$

これをよく見ると、複素数の極形式における乗法の計算と調和しているのです。

$$(\cos x + i\sin x)(\cos y + i\sin y)=\cos (x+y)+i\sin (x+y) $$

中学数学で特に重要な公式等3つ

試験というものを度外視して、中学校を卒業した後も(勉強を続けるなら)必要になるという意味で、中学数学において特に重要な公式等を3つ厳選してみたいと思います。

もちろん、それ以外のものは一切知らなくてもよいという意味ではありません。
ここでは、「特に重要なものを敢えて挙げるとしたら?」という事で挙げてみます。

また、「重要か・重要でないか」という事はどうしても主観的な面があります。「重要な公式」を集めたものは、じつは「数学的な意味での集合」ではない(!)という事が実は言えます。何が重要で何が重要でないかは人によって意味が異なる場合があり、正しいか正しくないかという事を絶対的に決められないからです。ここでは、高校や大学に進学して学習を続けた場合に欠かせないという意味での重要さを考えてみたいと思います。

BGM:MUSMUS CV:CeVIOさとうささら
中学数学で特に重要な公式等を3つ挙げるとしたら?

①三平方の定理(ピタゴラスの定理)

三平方の定理は直角三角形の辺の長さに対して成立する公式で、内容的にはそれほど複雑ではないので比較的分かりやすい公式かと思います。

$$直角三角形の斜辺cと、残り2辺a,bに対してa^2+b^2=c^2$$

基本的には図形に対して成立する公式であるわけですが、三角関数を考えるうえでの基本となる公式であり、直交座標上の2点間の距離を算出するのにも使う公式でもあります。複素数の極形式やベクトルの大きさの定義にも直結している公式であり、数学だけでなく物理学等でも頻繁に使う式になります。

三平方の定理が直接的に関わる事項
  • 三角比 および 三角関数の定義と公式
  • 直交座標上の2点間距離の算出(平面、空間の両方)
  • 極座標の式
  • 複素数の極形式(→微分方程式の解法として重要な場合あり)
  • ベクトルの大きさの算出(→力ベクトル、速度ベクトルなど、物理学で使用)

また、間接的に関わる事項として「平方根」の考え方も、三平方の定理を使って2点間の距離を算出するうえで特に必要になるものとなります。数学的にも、「無理数」に属する実数のうち初歩的なものとして2や3などの平方根を挙げる事ができます。

直角三角形と三平方の定理は、三角比と三角関数の考え方のおおもとになっています。
直交座標上の2点間の距離は三平方の定理によって算出します。
直交座標上の円の式なども三平方の定理を適用しています、

②因数分解と式の展開

2番目に挙げたいのは、もしかすると最も「役に立たないもの」として挙げられる事も多いかもしれない因数分解と、その逆の操作である式の展開です。

$$因数分解(例):x^2 – x=x(x-1)$$

$$式の展開(例):x(x+1)=x^2+x$$

因数分解とは要するに数や式を積(掛け算)の形に直すというだけのものですが、「実数(および複素数)に掛け算して0になる数は『0しかない』」という性質を使って方程式を解く基本的な方法として使われます。また、一見複雑な式を整理するためにも使いますので、数学の理論でも、物理学や工学の理論で数式を扱う際にも、因数分解と式の展開は計算の手法として必須です。

$$方程式の解法(例):x^3-3x^2+2x=0\Leftrightarrow x(x-2)(x-1)=0 \Leftrightarrow x=0,1,2$$

また、物理学等への数学の応用では微積分が重要ですが、微分および積分の初歩的な理論でも因数分解と式の展開は計算を進めるうえで必ず必要になります。

微積分を学ぶうえでも因数分解と式の展開の考え方は必要になります。

もちろん、因数分解の計算ができる事以上に重要な事として、ここで挙げたいずれの例においても「因数分解の計算」自体は目的ではないのが基本です。数学自体の理論でも、数学を応用する理論でも、基本的に因数分解や式の展開はあくまで計算の手段の1つです。従って、学習の目的を忘れてひたすら「因数分解の計算問題を解く」という事に没頭してしまうと(あるいは没頭させてしまうと)、「役に立たない」という事に繋がってしまうというのは確かに事実でしょう。

③マイナス×マイナス=プラス

3つ目として、因数分解等にも関連しますが、「マイナスとマイナスを掛け算するとプラスになる」という関係式を挙げておきたいと思います。

$$(-1)×(-1)=+1$$

$$計算例:(x-1)(x-2)=x^2-x-2x+2=x^2-3x+2\hspace{10pt}【(-1)×(-2)=+2】$$

この計算は、プラスの値の範囲の計算(例えば個数や金額の計算)ではそれほど重要ではないと言えます。しかし「向き」が関わる計算では重要である場合があり、とりわけ物理学では重要です。

あるベクトルの向きが逆向きである事を表すためにもマイナス符号は使われ、「2回反転させるともとの向きに戻る」といった事も、「マイナスとマイナスを掛け算するとプラスになる」という計算規則と調和するわけです。

また、複素数を構成する虚数単位はi=-1を満たす「数」として定義されますが、(-1)=1という計算のもとで、虚数単位iは1とー1以外の数で「4乗すると1になる数」という見方もできるわけです。この事は、より一般的な形で複素数の掛け算についての規則としてまとめられています(「ド・モアブルの定理」)。

そういった理論の考察をする基礎となる事から、(-1)×(-1)=+1という関係式は一見すると奇怪に思う人も多いかと思いますが、特に重要なものとしてここで挙げておきたいと思います。

直感的な説明の一例:7-3=4という引き算を、敢えて7-(5-2)=4と書いてみましょう。
この時、7から5を引いたら2で、元々の7-3=4から見ると多く「引き過ぎ」です。そこで、引き過ぎている分である2を加える、つまりプラスの値として加算すると正しい計算結果になります。
式と計算規則に対して、このような意味付けをする事は可能です。
この他に、マイナスの符号をプラス符号の「逆向き」として捉える例などもあります。

ベクトル場に対する接線線積分の定義

接線線積分は曲線を積分経路とする積分で、
ベクトル場(座標成分を変数とするベクトル関数)に対して定義されます。

☆接線線積分の事を、ベクトル場に対する「線積分」と呼ぶ事もあります。 これに対して、スカラー場(座標変数を変数とするスカラー関数)に対する「線積分」の定義も別途に存在します。
その場合には積分の仕方および積分の方向に対する定義の仕方が、ベクトルに対する接線線積分とは少し異なります。

「ベクトル場に対する接線線積分」と「スカラー場に対する線積分」のいずれも、積分経路を平面または空間内の曲線とする定積分という事は共通します。また、後述しますように、両者は座標成分による内積計算によって関連し合っています。

☆サイト内リンク:参考・より初歩的な内容

接線線積分の英名は、 curvilinear integral と表記される事が多いです。
(「線積分」は line integral 。ただし英名表記でもこの語が接線線積分を指す事もあります。)

ベクトル場に対する接線線積分は、曲線が開曲線である場合と、閉曲線である場合とで、基本的な考え方は同じですが表記方法や積分方向に関する定義が微妙に異なります。

開曲線(open curve)と閉曲線(closed curve)とで、接線線積分の積分の方向に関して定義が微妙に変わります。基本的・本質的な考え方自体は両者で同じです。

開曲線に対する接線線積分
【定義・考え方・表記方法】

まず、積分経路が閉じていない曲線(開曲線)の場合を考えます。
開曲線とは、図形的には単純に両端がどこにも結び付けられていない曲線の事で、例えば2次関数のグラフのような曲線です。(曲線と言いますが直線も含みます。)

そこで、ベクトル場を\(\overrightarrow{F}\)として、
ある曲線の点Pから点Qまでの接線線積分を考えるとします。
また、各点での接線ベクトル\(d\overrightarrow{l}\)を考えます。
接線ベクトルの大きさは、曲線上の微小な弧状の区間の長さであるとします。
(※各点での接線ベクトル自体は互いに逆向きの2方向がありますが、
PからQに向かう方向を考えます。)

経路における孤状の各区間についてベクトル場と接線ベクトルとの内積を考え、その総和を考えます。経路の分割を増やしていった時の極限値が接線線積分です。

接線線積分の定義と表記法

曲線上の各点でのベクトル場と接線ベクトルの内積とその合計を考え、
経路の分割を増やした極限値を曲線に沿った点PからQまでの
ベクトル場\(\overrightarrow{F}\)の接線線積分と呼びます。 $$曲線上のPからQまでの接線線積分$$ $$\int_{PQ}\overrightarrow{F}\cdot d\overrightarrow{l}$$

あるいは、PやQは点(位置としてのベクトルと考えても同じ)という事をことわったうえで、通常の積分のように積分記号の上下に積分範囲の端点を分けて記す場合もあります。
また、曲線の範囲を指定して名前をつけて(例えばL)、
それを積分経路の範囲として記す事もあります。 $$P,Qを点として\int_P^Q\overrightarrow{F}\cdot d\overrightarrow{l}と書く場合もあります。$$ $$端点をベクトルとした場合:\int_{\overrightarrow{P}}^\overrightarrow{Q}\overrightarrow{F}\cdot d\overrightarrow{l}$$ $$L を曲線上の特定の部分として\int_L\overrightarrow{F}\cdot d\overrightarrow{l}と書く場合もあります。$$

接線ベクトルに使う文字自体は何でもよく、
l(エル)ではなくr,s,t等を使う事もあります。

また、接線単位ベクトル(大きさが1の接線ベクトル。\(\overrightarrow{l}\)とします。)と
微小な弧長(\(ds\)とします)を分けて、次のように書く事もあります。 $$接線線積分の別表記:\int_{PQ}\overrightarrow{F}\cdot \overrightarrow{l}ds$$

ここで、各微小区間の弧において考えている内積は通常のベクトルに対して考えるものと同じであり、それぞれのベクトルの大きさと、なす角の余弦との積を考えます。

曲線上に沿ったベクトル場の接線線積分は、微小区間での内積を考えて合計した定積分です。

尚、曲線上の各点を結んだ折れ線が、点の数を無限に増やした時に極限値を持つ事は三角不等式を使って確かめる事ができます。基本的には円周率の値を極限値として図形的に計算するやり方と考え方は同じです。

通常はそのままの形では接線線積分の具体的な値は計算できない事が多いので、余弦の値が確定するようなモデルを考えるか、積分を変形して計算できる形にして考える場合があります。

開曲線に対する接線線積分の基本となる考え方をまとめると次のようになります。

  • 積分経路となる曲線の端点を決める(例えば点Pと点Q)
  • 積分の方向を決める(例えばP→Q,あるいはQ→P)
  • 曲線上の接線ベクトルは、積分の方向を向くと約束する
    【曲線上のある点での接線は、
    ある1つの方向とその逆向きの2方向があり得る → 片方に定める。】
  • 曲線を、微小な区間で構成される折れ線であると考える
  • 各区間で、ベクトル場と「微小区間の長さを大きさとする接線ベクトル」との内積を考え、積分経路全体での合計を接線線積分と定義

後述しますように、接線線積分の内積の部分を座標成分によって計算して、全体としてはスカラー関数の線積分として計算を進める方法もあります。

閉曲線に対する接線線積分

曲線が閉曲線(例えば円や楕円など)の場合にも、基本的な積分の方法は開曲線の場合と同じです。
ただし、積分方向に関する約束が開曲線の場合と異なるのです。

接線線積分の積分経路が閉曲線全体の場合、積分の「方向」が問題になります。

問題となるのは閉曲線に対して1周回転する形で接線線積分を行う場合であり、2通り存在する向きを1通りに確定させるための定義の仕方が存在します。

閉曲線全体が積分区間の場合には、ある点Pから積分を始めて同じ点Pに戻ってくる時に向きが2通りあり得ます。そのため閉曲線上の接線線積分を考える時には、積分の方向を約束して1通りに確定させておく必要があるわけです。

☆なお、閉曲線上であっても積分区間が閉曲線全体ではなく部分的な弧である場合には積分区間を開曲線とみなせばよいので、向きに関する約束は必要なく2点PとQに対してP→QなのかQ→Pなのかを決めておけば良い事になります。

周回積分と組み合わせた表記法

積分区間となる曲線が閉曲線(長方形や多角形も含みます)の全経路である場合、周回積分の記号と組み合わせて次のように接線線積分を書く表記法があります。

閉曲線に対する接線線積分の表記

閉曲線をCとして、1周まわる形でC全体を経路として接線線積分を行う場合は、
次の表記をする事があります。 $$\oint_{C}\overrightarrow{F}\cdot d\overrightarrow{l}あるいは\oint_{C}\overrightarrow{F}\cdot \overrightarrow{l}ds$$

閉曲線上を積分する向きは、次のように約束します。

  • 平面上の場合:接線線積分の向きは、反時計回りと約束。
  • 空間内の場合:接線線積分の向きは、
    「閉曲線で構成される面の法線ベクトルのプラス方向側(どちらがその方向か決めておく)から閉曲線を見た時に、『閉曲線の内側が左に来る向き』」と約束。

閉曲線を表す記号としてCを使う事が多いですが、これは英名 closed curve 等の頭文字を意味する事が多いと思われます。

周回積分である事を表す記号は省略される事もありますが、その場合でも閉曲線全体の接線線積分を考えているのであれば、積分の方向に関する約束は同様に適用されます。

接線積分の方向の約束①:平面上の閉曲線の場合

平面上だけで周回積分として接線線積分を考える時には、
積分する向きは反時計回りとして約束します。
この場合の「平面上」とは、
例えば、数学上のxy平面を考えて、そこでの閉曲線を考える場合などです。

$$周回積分の記号を省略して\int_{C}\overrightarrow{F}\cdot d\overrightarrow{l}と書いても向きに関する約束は同じ$$

平面上で閉曲線全体を積分する場合には、積分の向きは反時計回りとして約束し、ベクトル場と接線ベクトルとの内積を考えます。

平面上で閉曲線を考える場合のこの考え方は、図形が描かれている画面を見ている構図で考えると、空間内の場合での約束の仕方を理解する時に便利です。

接線積分の方向の約束②:空間内の閉曲線の場合

空間内での閉曲線を考える場合、閉曲線で構成される面の表側から見るか裏側から見るかによって、時計回りか反時計回りなのかが逆になってしまいます。

そのため、その場合にはまず、閉曲線で構成される面の「表側」(法線面積分において法線ベクトルがプラスになる側の面)を決めておきます。

そして、
「曲面の表側から曲面を見て、曲線上をたどった時に『閉曲線の内側が左側になる』向き」
を、接線線積分の積分方向であると約束します。

その方向を閉曲線Cの「正方向」とも言います。

この考え方のもとで、平面だけで考える場合の閉曲線上の積分方向は、
「図が描かれた画面を面の表側であると考えた場合」であると言う事もできます。

接線線積分の積分方向を考えるうえでの曲面は、閉曲面を考えずに開いた形の曲面を必ず考えます。

「右ねじ」の考え方

上記の、閉曲線に対する接線線積分の積分方向の約束は、より直感的な理解の方法もあります。

それは工具の「ねじまわし(ドライバー)」を使った考え方です。

まず、曲面の表面から出るベクトル(例えば法線ベクトル)の矢印の先を「一般的なねじまわしの先端」と考えます。そして、「『ねじを締める方向』が接線線積分の積分する向き」であると捉えると、これは前述の定義の仕方と一致するのです。

ねじ回しを上に向けて締める場合に上から見ると反時計回りで、
逆にねじ回しを下に向けて締める場合に上から見ると時計回りであり、
空間内の任意の閉曲線に対してこの考え方は適用できます。
これは一種の例えによる表現ですが、物理学で多く使われます。「右ねじの方向」「右ねじをまわす方向」など、いくつか呼び方があります。

一般的なネジは、ネジまわしを時計回りに回す事で締まるように作られています。
その事を、回転の向きを表すものとして比ゆ的ですが数学や物理学でも使用する場合があります。

接線線積分の座標成分による内積計算
【スカラー場に対する線積分との関係】

さて、接線線積分の表記の中における内積で表されている部分については座標成分によって表す事もできます。これは、法線面積分における考え方と似ています。
この時に、ベクトル場の個々の座標成分はスカラー関数ですから、そのように表記した時には接線線積分は、「x,y,zを変数とするスカラー関数に対する線積分」に変化します。

まず、接線ベクトルを座標成分で次のように書きます。

$$d\overrightarrow{l}=(dx,dy,dz)$$

そこで、ベクトル場に対する内積の計算をすると次のようになります。

$$\large{A_1=A_1(x,y,z),\hspace{5pt}A_2=A_2(x,y,z),\hspace{5pt}A_3=A_3(x,y,z)\hspace{5pt}}のもとで$$

$$\overrightarrow{A}=\large{(A_1,A_2,A_3)}\hspace{5pt}である時、$$

$$\large{\overrightarrow{A}\cdot\overrightarrow{dl}=A_1dx+A_2dy+A_3dz}$$

さてしかし、じつはこのように表記した時には積分をする時に、
どういった積分変数で積分を行うのかといった問題が起こる事があります。
この段階ではベクトル場の成分はx,y,zに関する多変数関数であるという前提があります。
そのため、それらをそのままの形で、例えばx単独で積分してしまうと問題が発生するのです。

また、この内積の計算は、曲線上の各点における接線ベクトルごとに行っています。
従って、積分変数を単独のx,y,zとしようとする時に、もともとの積分経路が閉曲線である場合や、開曲線であっても例えば曲がりくねって1つのx座標に対して対応するy座標が2つ以上ある場合には、全体の積分経路を個々の積分変数ごとに1つの積分区間で表せないという問題もあります。

この段階では、ベクトル場のx成分、y成分、z成分はそれぞれ、
x,y,zに関する多変数のスカラー関数として考えています。
従って、これらをx,y,zで積分しようとする時には注意が必要になります。

そこで、次のように考えます。
曲線という積分経路が指定されている場合には適切に経路を区切る事によって、その区切られた経路の範囲においては1つの変数の値を定めると1つの曲線上の点が定まる事を利用します。
その区切られた経路ごとにA,A2,Aのそれぞれを、
xのみ、yのみ、zのみの関数として表します。

$$適切に区切った経路ごとに次の形で表現:\large{A_1=A_x(x),\hspace{5pt}A_2=A_y(y),\hspace{5pt}A_3=A_z(z)\hspace{5pt}}$$

※特に空間においての場合は、曲線上の特定の経路間という条件のもとで、スカラー場の関数を1変数のみで表す事ができます。

これによって、経路の区切り方に注意したうえで接線線積分をx,y,zそれぞれの1変数関数の積分の合計として表す事が可能になります。もちろん、具体的な値を1変数の定積分の合計値として計算するには、具体的な関数の形が明らかである事が必要です。

例として、平面上で接線線積分の積分経路が原点を中心とした半径1の円である場合に、内積を計算してから積分する事を考えてみましょう。

この例では、積分経路を区切って分割したうえで、2つの経路のそれぞれについて、
ベクトル場のx成分を「xのみの変数で表した関数」として考えて積分を行っています。
この場合、y成分について同様の事を考える場合には、別の区切り方が必要になります。

この時に、x方向の通常の定積分をしようとすると [-1,1] という1つの積分区間だけでは、元々の全体の積分経路である円周の半分についてしか内積のx成分についての項の合計を表せません。
そこで、xに関する定積分を2つに分けます。
まず点(1,0)から始めて(※)、
「x=1からx=-1に向かう」積分区間について、xを積分変数とする定積分をします。
この区間は、ここで考えている円の上半分に該当します。

※どこの点から積分を行っても、最終的に積分経路の全体に渡って積分を行っているなら同じ結果を得ます。

$$式で書くと\large{\int_1^{-1}A_xdx}を計算します。$$

そして次に、今度は(-1,0)から始めて(1,0)に戻る積分区間 [-1,1] の積分をします。この区間は、ここで考えている円の下半分に該当します。
同じ経路をたどって戻るのではなく、別の経路をたどって戻っています。

$$式で書くと\large{\int_{-1}^1A^{\prime}_xdx}を計算します。$$

ここで、元々の接線線積分の積分対象となっているベクトル場は円の上半分と下半分の経路上で一般的には異なるベクトルになっていますから、
その座標成分も一般的に異なるスカラー関数で構成されているわけです。
そのために、上記の積分の中ではAx とA’ xという形で、異なるスカラー関数である事を強調して書いています。(ここでは後者は微分という意味ではありません。)
xに関して「1→+1」の積分区間と「-1→+1」の積分区間の積分は、xに関して陽に表される関数(y=f(x)の形で表される関数。陽関数とも言います)としては異なるものに対する積分です。

ここでの例では具体的には、
\(\large{A_x}=\sqrt{1-x^2}\)
\(\large{A^{\prime}_x}=-\sqrt{1-x^2}\) として表せます。

y成分についても同じように考えます。

このように、接線線積分を内積計算によって「スカラー場に対する線積分」の計算にする時には、場合によっては積分する範囲等について注意が必要となります。ただしその事は、スカラー場に対する線積分の定義に組み込まれているものになります。

積分する範囲ごとの関数の形の混同を避けるために、スカラー場に対する線積分においても、接線線積分における積分経路をPQのように端点で表す表記方法もあります。

例えば上記の例の円において、(1,0)を点Aとして、(-1,0)を点Bとしたときに、ベクトル場の成分であるスカラー関数は共通のAおよびAyで表して、線積分を次のように書く事もできます。

$$\large{\oint_{C}\overrightarrow{F}\cdot d\overrightarrow{l}=\int_{AB}A_xdx+\int_{BA}A_xdx+\int_{AB}A_ydy+\int_{BA}A_ydy}$$

この場合には、平面上の閉曲線(ここでは円)を反時計回りに回る約束で積分をする時に
A→BとB→Aの経路は異なる曲線(異なる2つの開曲線)と考えられるので、
「同一の1変数関数を同じ積分区間で行って戻って積分して合計は0 ??」・・・といった事には、一般的にはならない事を表現できるわけです。

接線線積分に関する定理とその応用

応用例として、ベクトル場に対する接線線積分は物理学の力学や電磁気学で使われます。特に、数学上成立する定理で応用でも重要なものとして、ストークスの定理と呼ばれる関係式が存在します。

応用例①:積分経路が開曲線の場合…仕事と位置エネルギー

力学における「仕事量」は、接線線積分として定義されます。積分の対象となる関数は力ベクトルです。接線線積分による定義と計算から、別途に運動エネルギー、力学的エネルギーなどの概念が理論的に定義されます。

$$力\overrightarrow{F}によるPからQまでの「仕事量」:W=\int_{PQ}\overrightarrow{F}\cdot d\overrightarrow{l}$$

(「仕事」\(\overrightarrow{F}\cdot d\overrightarrow{l}\) の合計が「仕事量」)

◆補足:Fという記号は、数学では function(関数) の頭文字という意味合いで使う事が多いですが、力学では force(力)の頭文字という意味合いにする事が多いです。

この場合の積分経路は基本的には任意ですが、特に必要がなければ開曲線として考える場合が多いのです。これは、単純に「位置Pから位置Qまで物体が移動したとき」といった場合をモデルとして考えるためです。

力ベクトルの向きと物体の変位ベクトルとの向きは異なる事を踏まえ、内積を考えます。それを(微小な)各区間で考えて合計した接線線積分が仕事量になります。

力のうち、保存力がなす事が可能な「仕事」は、特に位置エネルギーポテンシャルエネルギー)とも呼ばれます。これも「仕事」ですから、数式的には接線線積分を考えるわけです。

静電場(時間変動の無い電場)による位置エネルギーは特に電位とも呼ばれ、これは「仕事」ですから力学におけるものと同じく接線線積分で表されるのです。ただし、位置エネルギーの積分範囲は基本的には「『無限遠』からある点まで」とする事が多いです。

$$静電場\overrightarrow{E}による点Pにおける「電位」:V_P=-\int_{\infty}^P\overrightarrow{E}\cdot d\overrightarrow{l}$$

それに対して、無限遠でない特定の2点間PとQの電位の差(QからPまで単位電荷を運ぶのに必要な電場の仕事量)を電位差あるいは電圧と言い、こちらは2点間の接線線積分として書かれます。

$$静電場\overrightarrow{E}による点Pと点Q間の「電圧」:V_{PQ}=\int_P^Q\overrightarrow{E}\cdot d\overrightarrow{l}\left(=-\int_Q^P\overrightarrow{E}\cdot d\overrightarrow{l}\right)$$

この「電圧」という語は、電線や電池、発電機等に対して使われる「電圧」と同じものです。
ただし、接線線積分で表される電圧の式は「電場をもとに計算する場合の式」ですから、別の要素によって電圧を決定できるか、あるいはそのように決定できるように状況を整えた場合には積分計算は不要になります。後述で簡単に触れている電磁誘導の法則はその例です。

応用例②:積分経路が閉曲線の場合…電磁気学、流体力学におけるストークスの定理

閉曲線に対する接線線積分に関する数学上の定理で、物理学・工学への応用上も重要なものとしてはストークスの定理があり、流体力学や電磁気学の理論計算で使われます。

ストークスの定理は、閉曲線に対する接線線積分と法線面積分を結びつける事ができる定理として知られています。ベクトル場の「回転」(記号では rot あるいは curl)を使用し、その回転という名称をつけている由来にも関係します。

ストークスの定理

閉曲線をCとし、Cで囲まれるS(閉曲面では無い)に対して次の関係が必ず成立します。 $$\oint_C \overrightarrow{F}\cdot d\overrightarrow{l}=\int_S\mathrm{rot}\overrightarrow{F}\cdot d\overrightarrow{s}$$ 左辺は接線線積分、右辺は法線面積分です。 ※空間内の任意の閉曲線Cに対して、
「それぞれのCに対して定まる任意の『閉曲面では無い』曲面S」についてこの式が成立する
という事です。

つまり、閉曲線自身と閉曲線で囲まれる面を考えると、数学上定義される「ベクトル場の『回転』」の法線面積分の値は、面の縁に相当する閉曲線を文字通り「回転」するように接線線積分した値に必ず等しくなる、という事です。

ストークスの定理は、例えばアンペールの法則の積分形(「アンペールの周回積分の法則」とも。電流によって発生する環状の磁場を記述)を微分形に変換できる数学的な根拠となります。
逆に、アンペールの法則の微分形を積分形に変換できる事もストークスの定理により証明できます。

また、同様に電磁誘導の法則の微分形と積分形の変換もストークスの定理によって証明できます。電磁誘導の法則の積分形は、前述の「電圧」を発生させる状況を記述するものになります(※)。

(※)補足:電磁誘導の法則の積分形は電場の仕事量を接線線積分で計算するという形をとりますが、それは「磁場の時間変化によって決定できる」というのが法則の内容です。
従って、工学等で応用する場合には磁場の変化から計算するほうが簡単で電場から計算する必要は無い場合もあるわけです。

ストークスの定理は、もちろん自明に成立しているとは言えません。その証明方法はガウスの発散定理の証明に似ていて、関数をその偏微分の定積分とみなす事で証明を行います。定理の内容はベクトルの成分に関する3式の組み合わせになりますが、それら3式のそれぞれについて個別でも成立するという点でも似ています。

ベクトルの考え方:スカラーとの違い

ベクトルの基本事項のうち、通常の数(スカラー)との違いについて説明します。

◆ベクトルの使われ方:単に数学だけの話で勉強をしていると「何のために学ぶのか?」という疑問は必ず生じると思います。
ベクトルの場合は、例えば物理学への応用では「ベクトルの微積分」の考え方が重要になります。

☆関連(ベクトルに関する記事。サイト内リンク):
ベクトルの相等:自由ベクトルと束縛ベクトル【2つのベクトルが等しいとはどういう事か?】
ベクトルの内積
外積ベクトルの定義と公式

☆物理学へのベクトルの応用
古典力学とベクトルの微分
ベクトル解析

べクトルの考え方とイメージ

基本的には、ベクトルとは「方向」と「大きさ」の2つの合わせ持つ量として考えられます。通常の正の実数や自然数などは「大きさ」しか持ちません。

◆プラスとマイナスを「互いに逆の方向」とみなせば通常の実数等も「互いに逆向きの2つの方向」を持っているとも言えますが、ベクトルは平面や空間のあらゆる向きの方向を考えます。

イメージとしては、平面上の線分が向きを持っているという感じです。
(空間内の線分でも同じです。平面上のベクトルを特に平面ベクトル、空間内のベクトルを特に空間ベクトルと呼ぶ事もあります。数学的には、より「次元の高い」ベクトルも定義できます。)

平面に点Aと点Bを結ぶ線分があった時、その線分は長さ(大きさ)を持ちます。その線分に対して、「AからBに向かうのか」「BからAに向かうのか」という事も決めたものが「ベクトル」であるというのが基本的なイメージです。

ベクトルは図形的に見れば点と点をつなぐ「矢印」として表されます。
この図では空間ベクトルの色々な表記法・計算などを図示しています。
ベクトルの矢印の始まりの点を「始点」、矢印の先端の点を「終点」と言います。ベクトルは、座標の成分でも表す事ができます。数学的には、座標成分で表す方法のほうが色々な計算で便利です。ただし、物理でベクトルを用いる場合は、図形的な考察も重要となる場合があります。

この考え方は、例えば力学の「速度ベクトル」で使います。

例えば点Aから点Bの間で物体が移動しているという時に、
「AからBに向かっているのか」「BからAに向かっているのか」で、運動の性質は当然異なります。
それを数式としてはベクトルで表現するのです。

◆より正確に言うと、
ベクトルとは「向きと大きさを持ち、加算、減算、定数倍、内積といった演算が定義できる」ものとして数学上定義されます。それらの演算もまた、物理学等への応用でも使います。

ベクトルの表記方法

ベクトルの表記方法はいくつかあります。

図形的に矢印で図示する方法、平面上または空間内の点を使って表す方法、原点を基準にした座標で表現する方法、などがあります。

①図形的に矢印で図示する方法
(始点と終点を明記する方法)

ベクトルは図形的に図示して表現する事ができます。この場合には、方向を持つ事を明確にするために、ただの線では無く「矢印」を用いるのが通例です。

この時には、向きが例えば「点Aから点B」の場合には矢印の先(矢の部分)を点Bの部分に書きます。

逆に、「点Bから点A」の向きであれば、
大きさは同じで逆向きのベクトルという意味で矢印の先を点Aに書くわけです。

点Aと点Bのどちらを始点に選ぶかで、異なるベクトルになります。

「点Xから点Y」に向かうベクトルがある時(この時に大きさも確定していますが)、
点Xをベクトルの始点、点Yをベクトルの終点と言う場合があります。

平面上だけでなく、空間内でも考える事ができます。

②平面上または空間内の点を使って表す方法

平面上または空間内において、原点Oから点Aへの向きと大きさを持つベクトルを、$$\overrightarrow{OA}$$と書く表記方法があります。

線分OA の上に「矢印」をつけるわけです。
点Oから点Aに向かう「方向付きの線分」ですよ、という意味合いです。

また、原点を基準とする事が明らかである場合は、次のようにも書きます。 $$\overrightarrow{a}$$
この場合には、点Pや点Qといった点の名称を使うよりは、何か適当な小文字(a, b, p, q, x, y, ・・・)を使う事が比較的多いように思います。

普通は \(\overrightarrow{OA}に対して\overrightarrow{a}、\overrightarrow{OB}に対して\overrightarrow{b}\) のようにアルファベットを対応させますが、これはあくまで分かり易くするためです。
「このベクトルをこの文字で表す」と明示しておけば、対応させなくても間違いではありません。

原点を基準としないベクトルも考える事ができます。
例えば、点Aから点Bに向かうベクトルは\(\overrightarrow{AB}\)と書くことができ、
逆に、点Bから点Aに向かうベクトルは\(\overrightarrow{BA}\)と書くことができます。

◆ベクトルに定数倍(スカラー倍)、加算、減算などの演算を定義すると、$$\overrightarrow{AB} =-\overrightarrow{BA}$$ という関係式が必ず成立します。(※厳密には、演算の定義が無いとマイナスの符号をつけるといった事自体に数学的な意味が発生しない事には注意。)この関係は、次に見る座標によるベクトルの表現を見る事でもイメージしやすくなります。

③座標を使った表記方法

直交座標上の原点(0, 0)を基準とする事を前提に、ベクトルを座標で表す方法があります。

この場合、「原点から特定の点まで」という「大きさ」と「方向」を定めているわけです。

例えば(1, 1)という座標は平面の直交座標において
「斜め右上45°方向の大きさ \(\sqrt{2}\) 」というベクトルを表す事ができるのです。

このようにベクトルを座標で表したとき、通常の座標のようにx成分、y成分といった言葉を使います。「あるベクトルのx成分、y成分はともに1」といった具合です。

原点を始点にするという前提で、ベクトルを座標で表す事ができます。

この方法でベクトルを考えると、(1,1) というベクトルと( -1, -1) というベクトルは、大きさは同じで向きは逆向きである事がわかります。(図示でも、計算でも示せます。)

一般に(x,y) と(-x, -y) という2つのベクトルは「同じ大きさの逆向き」のベクトルです。この「逆向き」である事を、ベクトルにおいてもマイナス符号で表現したりします。

なお、ベクトルの大きさを計算する方法は座標上の2点間距離を計算する方法と同じであり、三平方の定理を使います。

ベクトルを、始点と終点を明記して矢印で表す表記と、原点を基準にして座標で表す表記は、実は原則としては「向き」と「大きさ」を表現する方法としては同一視できるものです。ただし、ベクトルをどういうものとして考えるかの前提が必要にもなります。詳しくは「ベクトルの相等:自由ベクトルと束縛ベクトル」で説明しています。

④ボールド体表記(主に書籍等で使用)

通常の文字 a, b, x 等に対して、それらを「ボールド体」a, b, x 表記にする事でベクトルを表す場合もあります。

この表記は書籍では多用されますが、慣れてないと通常のスカラー変数なのかベクトルなのか、紛らわしいかもしれません。
ウェブ上だとさらに分かりにくい事があるので、
当サイトでは敢えてベクトルは全て「矢印」の表記にしています。

  • 矢印表記:\(\overrightarrow{a} \)
  • ボールド体表記 a・・これでベクトルを表す (通常の表記 a )

スカラーとは?ベクトルとの違い

ある量がベクトルであるか通常の数であるのか区別が必要な時には、
ベクトルに対して通常の数(実数など)をスカラーと呼びます。
(※言葉としては「ベクトル量」「スカラー量」といった言い方もします。それぞれ、「ベクトル」「スカラー」と同じです。)

また、対象が関数である場合にはベクトル関数スカラー関数と呼んで区別もします。変数、定数といった語にも同様にベクトル・スカラーの名称をつけて呼ぶ事があります。

  • \(F(x), x, a\) ・・スカラー関数、スカラー変数、スカラー定数
  • \(\overrightarrow{F}(x),\overrightarrow{x},\overrightarrow{a}\) ・・ベクトル関数、ベクトル変数、ベクトル定数(定ベクトル

★ ベクトル関数については座標成分で表す表記が分かりやすいかと思われます。
例えば変数xに対するてきとうな(x+1, x2)といったベクトルを考えると、このベクトルはxの値によってただ1つ定まります。そのようなベクトルをベクトル関数と呼ぶわけです。

いずれの場合も、「スカラー」という語を使う時には
「ベクトルではなくスカラー」という意味合いが強いです。
言い換えると、ベクトルを使わない議論をしている時にスカラーという語を敢えて使う事は少ないと言えます。

ベクトルには通常の数つまりスカラーを掛け算する事ができ、それは図形的にはベクトルの大きさだけを変化させる操作です。その事をベクトルの定数倍、あるいはスカラー倍とも言います。

$$ベクトルのスカラー倍:例えば\hspace{5pt}2\overrightarrow{AB},\hspace{5pt}-4\overrightarrow{AB},\hspace{5pt}\sqrt{3}\overrightarrow{AB}$$

関数の場合、「多変数のスカラー関数」と、ベクトル関数の違いに注意。
ベクトル関数にも1変数のもの、多変数のものがあります。
関数と区別する場合、成分が定数で構成されるベクトルを特に「定ベクトル」と呼ぶ事があります。

物理学等への応用も含めて、ベクトルに関して成立する定理、スカラー関数に関して言及している関係式などがあります。演算を組み合わせてベクトルとスカラーの関係が混じる事もあります。そういった時に、問題にしている対象がベクトルなのか「通常の実数等=スカラー」なのかが数学的な議論の際に重要となるのです。

例として、ベクトルに対して「内積」という演算をすると通常の数、つまりスカラーになります。

逆に、微積分も含んだ込み入った例ですが、3変数のスカラー関数に対して「勾配」という演算をするとベクトル関数になります。

こういった議論を物理学や工学への応用も含めてする時に、扱う対象が「ベクトルなのか?それともスカラーなのか?」という事が重要になるのです。

ガウスの法則【電場と磁場の数学】

ガウスの発散定理およびガウスの積分と直接的な関わりを持つ物理学での応用例としては、
電磁気学における「ガウスの法則」が存在します。
ここでは特に、
数学と電磁気学との、ベクトル解析・微積分的な関わりの観点からの法則の説明をします。

◆関連:法線面積分の定義

◆下記で詳しく説明いたしますが、「ガウスの法則」には、積分の形で書いたもの(積分形)と、微分の形で書いたもの(微分形)の2つの形があります。数学的に両者は同等の式です。

ベクトルの基本的な考え方も使用します。

ガウスの法則とは?電場と磁場に関する法則

4つの「マクスウェル方程式」のうちの2つを指す
電場に関するガウスの法則 ◆磁場に関するガウスの法則
クーロンの法則の一般形という解釈

マクスウェル方程式
(電場と磁場に関するのガウスの法則・電磁誘導・アンペールの法則)
Eは電場、Bは磁場(「磁束密度」とする考え方も)です。
ρ:電荷密度 j:電流密度 t:時間 
ε:誘電率 μ:透磁率 添え字の0は「真空の」の意味でここでは使っています。
div:ベクトル場の「発散」 rot(curl):ベクトル場の「回転」  ∂:偏微分の記号
∇(ナブラ)記号と内積・外積の記号を組み合わせて div は「∇・」 rot は「∇×」のように書く事もあります。

4つの「マクスウェル方程式」のうちの2つを指す

電磁気学における「ガウスの法則」とは、
電磁気学の基本式である4つの「マクスウェル(Maxwell)方程式」のうち2つを指しており、
静電場(時間変動しない電場)と静磁場(時間変動しない磁場)に関する記述を行う式です。

★ただし時間変動がある場合にも、「ある瞬間について電場や磁場を考察した場合」には、任意の時刻についてガウスの法則が電場と磁場の両方に対して成立します。
他方で、電場や磁場の時間変動そのもの、つまり数式的に言えば電場や磁場の「時間微分」に関しては、マクスウェル方程式の残り2つの式によって考察を行う事になるのです。

ガウスの法則は、微分方程式でも積分方程式でも、どちらの形でも書かれます。(積分方程式とは、積分を含んだ形で書かれる方程式。)
どちらの形でも互いに変形が可能な、数学的に同等な式になります。

微分方程式で書かれた場合を微分形、積分方程式で書かれた場合を積分形とも言います。
数学の「ガウスの積分」との直接的な関わりがすぐに分かるのは積分形です。

電場に関するガウスの法則

電場に関するガウスの法則を式で書くと次のようになります。数学の定理と区別される「法則」なので、変数や定数は何でもよいわけではなく、電気と磁気に関連する量になります。

\(\overrightarrow{E}\) は電場(+1[C]の電荷が他の電荷から受ける電気力。ベクトルです)、
Qは点電荷の電気量、ρは電荷が連続的に分布している場合の電荷密度です。

ガウスの法則(静電場、積分形)

$$点電荷に対して:\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{Q}{\epsilon_0}}$$ $$電荷密度に対して:\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{1}{\epsilon_0}}\int_V\rho dv$$ ※左辺は、法線面積分です。Sは閉曲面、Vは閉曲面内の空間領域です。
閉曲面Sは、電荷あるいは電荷分布を囲む領域とします。
電荷密度は、空間の各位置によって大きさが定まるスカラー関数として考えています。
電磁気学では \(\overrightarrow{E}\cdot d\overrightarrow{s}\) を「電気力束」と呼ぶ事があります。

ガウスの法則(静電場、微分形)

$$\mathrm{div}\overrightarrow{E}=\large{\frac{\rho}{\epsilon_0}}$$ ※div はベクトル解析における「発散」です。
ガウスの法則の微分形は、基本的に電荷密度に対する式になります。

◆これらの積分方程式あるいは微分方程式の「解き方」については、
「具体的な電荷の分布の状況や閉曲面」を設定して、電場ベクトルの向きも最初から決定できるような状況のもとで解くというのが1つの例です。
閉曲面は、球、円柱、立方体など、対称性のある図形や分かりやすい図形で考察する事が多いと言えます。(※球面のような任意の点で滑らかな閉曲面だけでなく、円柱などへの適用も可能です。)

電場に関するガウスの法則(積分形)
電磁気学・静電場に関するガウスの法則(積分形):点電荷あるいは電荷が分布する領域を閉曲面で囲った時、その閉曲面の形状に関わらず法線面積分の値は、じつは閉曲面内部の電気量(の総和)に必ず比例するというものです。
静磁場に関しても似た形のガウスの法則が存在します。

微分形で書いた場合には、マクスウェル方程式全体に言える事ですが、電場の2式と磁場の2式のそれぞれについて、「発散(div)」の式と「回転(rot)」の式に分類する事もできます。【回転は curl とも書きます。】

磁場に関するガウスの法則

静磁場の場合にも、電場の場合と似た形の式が成立し、
それも同じくガウスの法則と呼ばれる事が多いです。

ただし、磁場に場合には電場の場合と異なって、「単独の『磁荷』」(「磁気単極子」)が存在しない(磁石で言うと、N極やS極が必ずセットになっていて単独で取り出せない)という事自体が1つの基本法則であると考えられています。

その事に由来して、
「電場の場合の式の右辺に相当する部分がゼロになっている形」が、磁場の場合のガウスの法則になります。

ガウスの法則(静磁場、積分形)

$$\int_S\overrightarrow{B}\cdot d\overrightarrow{s}=0$$ \(\overrightarrow{B}\cdot d\overrightarrow{s}\) は「磁束」と呼ばれる事があります。
\(\overrightarrow{B}\) は「磁束密度」と呼ばれる事があり、そこから別途に「磁場」\(\overrightarrow{H}\) を定義する事もありますが、\(\overrightarrow{B}\) を「磁場」と呼んでしまう事もあります。細かく言うと、それらの違いは「場」を力によって定義するかどうかという事によって生じます。

ガウスの法則(静磁場、微分形)

$$\mathrm{div}\overrightarrow{B}=0$$

静磁場は一定の量の電流の周りに対し、同心円(一定の半径の円)の周上に一定の大きさで発生します(向きは各場所で異なりますが)。
静磁場が同じ大きさで、磁力線がループを作る形で必ず閉じているわけで、この事から「磁場の発散 div\(B\) は必ずゼロになる」つまりガウスの法則の微分形が成立する」という事が実は言えます。
(ベクトル場の「発散」は、ベクトル場の各成分の成分座標による偏微分の合計で、図形的にはある点に流入・流出する何かの量を表します。そのため電磁気学だけではなく流体力学の理論などでも使われるものです。)

具体的な数式変形は後述しますが、数学的には、ガウスの法則の積分形の式を数学上の「ガウスの発散定理」を使って変形する事でガウスの法則の微分形が得られるという関係があります。

クーロンの法則の一般形という解釈

静電場を表す式としてはいわゆるクーロンの法則というものもあり、それは静電気による力と電気量との定量的な関係を表す式です。
ここで「静電気」とは、冬場などでパチパチとしたり、紙片やビニールがくっついたりしてしまう、あの静電気の事です。

ガウスの法則は、クーロンの法則を一般化した形であるという解釈も成立します。
その事を数式的に説明するには数学公式である「ガウスの積分」を使います。

ガウスの法則の1段階前の式とも言えるクーロンの法則の比例定数kは、
一見すると奇怪な形で書かれる事があります。
それは、比例定数が分母に円周率を伴った形で書かれるというものです。

$$k=\large{\frac{1}{4\pi\epsilon_0}}\hspace{10pt}\left(≒8.988×10^9\right)$$

ここでさらに\(\epsilon\)0 という比例定数が登場していますが、
これは電磁気に関する別の現象を表す時にも使う「真空の誘電率」です。

$$\large{\epsilon_0=8.8543×10^{-12}≒ \frac{1}{36\pi}×10^{-9}}$$

さてここで、なぜ円周率が出てくるのか?という話ですが、
これは数学公式のガウスの積分との直接的な関係があるのです。
数式によって後述しますが、実はガウスの法則をクーロンの法則から導出する方法を見る事で理由が分かるのです。

また、ガウスの積分は図形の「球」との直接的な関係がありますから、
上記の「円周率」は、最終的には図形の球に由来するものであるとも言えます。

クーロンの法則

r[m]離れた2つの物体があり、q[C]、q[C]の電気量を持っているという。この時に2つの物体間に働く力の大きさは、実験によれば次のようになります。 $$力の大きさ:F=\large{\frac{kq_1q_2}{r^2}}=\large{\frac{q_1q_2}{4\pi\epsilon_0r^2}}$$ $$ベクトルの場合:\overrightarrow{F}=\large{\frac{q_1q_2}{4\pi\epsilon_0r^2}}\cdot\frac{\overrightarrow{r}}{r}=\large{\frac{q_1q_2}{4\pi\epsilon_0r^3}}\overrightarrow{r}$$

クーロンの法則の比例定数をなぜか「円周率」を使って表す事があります。
その意味は、ガウスの積分を使ってクーロンの法則からガウスの法則を数学的に導出して考察してみると分かりやすいものになります。4という数字に関しては球の表面積の公式が間接的に関わっています。

導出:微分形と積分形の数式変換

電場の場合 ■ 磁場の場合

ガウスの法則の積分形と微分形の式は、数学的にはガウスの発散定理によって変換できます。

ガウスの発散定理

任意のベクトル場\(F\)について【※これは電場でなくともよく、数学的な任意の連続的なベクトル場に関して成立します。】 $$\int_S\overrightarrow{F}\cdot d\overrightarrow{s}=\int_V \mathrm{div}\overrightarrow{F}dv$$

これを使用して、積分形から微分形、および微分形から積分形への変換を数式で行う事ができます。

ガウスの法則の積分形と微分形
数学的には、ガウスの発散定理によってガウスの法則の積分形と微分形の変形を行う事ができます。
法則として、より物理的な解釈も可網です。

電場の場合

ガウスの法則の積分形の左辺は、発散定理の左辺の形をしています。ここで、電荷密度を考えた場合の式を見ると、領域内を体積分した形が右辺にあります。

$$電荷密度に対するガウスの法則:\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{1}{\epsilon_0}}\int_V\rho dv$$

$$ガウスの発散定理により\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\int_V \mathrm{div}\overrightarrow{E}dv$$

左辺が同一ですから、右辺同士を等号で結びます。

$$\int_V \mathrm{div}\overrightarrow{E}dv=\large{\frac{1}{\epsilon_0}}\int_V\rho dv=\int_V \large{\frac{\rho}{\epsilon_0}}dv$$

$$\Leftrightarrow \int_V \mathrm{div}\overrightarrow{E}dv=\int_V \large{\frac{\rho}{\epsilon_0}}dv$$

「2つの関数について、領域Vで体積分すると同じ値」という結果になっています。

ここで、「定積分した値が同じ」であるからといって、積分対象になっている関数が同一のものとは限らない事に注意は必要です。簡単な例を挙げると、y=xと、y=-x+1は、xについて0から1まで積分すれば同じ1/2という値ですが、当然積分の中身の関数は別物ですね。

しかしここでの場合は、積分する領域Vが、特定のVではなくて空間上の「任意の領域」です。
1変数関数の積分で言うと「任意の積分区間で」という事になります。
グラフを考えてみると分かりやすいかと思いますが、2つの異なる関数についてある積分区間で偶然定積分の値が等しくなったとしても、区間を変えればすぐに値は変わってしまいます。あらゆる区間で例外なく積分値が同じになるには、そもそも同一の関数でなければならないのです。
その理由により、上記の体積分の関係式についても積分する対象が等しくなければならないのです。

整理しますと次のようになります。

$$\int_V \mathrm{div}\overrightarrow{E}=\int_V \large{\frac{\rho}{\epsilon_0}}dvであり、「積分領域Vは任意であるから」\mathrm{div}\overrightarrow{E}=\large{\frac{\rho}{\epsilon_0}}$$

と言える事になります。
これは電場に関するガウスの法則の微分形に他なりません。【導出終わり】

逆に微分形から積分形を導出するには、微分形の両辺を領域Vで体積分し、
ガウスの発散定理によって法線面積分と結びつければよい事になります。

ガウスの法則の積分形から微分形を数式的に導出する時の、最後の段階の箇所。
任意の領域Vで成立している事が結論を数学的に導出できる根拠になります。

微分形と積分形の変換の方法は他にも幾つかあります。例えば、より物理学的な手法の1つとして、辺の長さが dx, dy, dz の微小な直方体を考えてガウスの法則の積分形を適用する方法があります。
この方法では dv=dxdydz として、その直方体内では電荷密度ρは「ほぼ一定」と考えます。
直方体の面は座標軸に平行であるとし、原点に一番近い頂点を基準として、面における電場ベクトルと法線ベクトル(大きさは微小面積)との内積を成分で考えます。
直方体の向き合う2つの面について、
法線ベクトルの向きは互いに逆向き(領域の外側を向く)事にも注意すると
例えばx軸に垂直な面の面積としてds=dydzを考えると、次のようになります。$$\large{\left(E_x+\frac{\partial E_x}{\partial x}dx\right)dydz-E_xdydz=E_xdxdydz=E_xdv}$$【Exは原点に最も近い頂点での電場ベクトルのx成分。この考え方では、微分および偏微分は「関数の近似一次式の傾き」という解釈を使っています。】
電場ベクトルと面の法線ベクトルとの内積計算を成分で具体的にすると、
例えば $$\large{(E_x, E_y, E_z)\cdot (-dydz, 0, 0 )=-E_x dydz}$$
残り4面(2組)についても同様の式を立て、合計します。
そして「ほぼ一定」とみなしたρを使って体積分の値は ρdvであると考えて、電場に関するガウスの法則の積分形に適用すると微分形が得られる――という考え方もあったりします。

ガウスの法則の微分形を、より物理学的な考察で導出する方法の1つ。微分係数および偏微分係数は関数の近似一次式の比例定数とみなせるとの解釈を使用します。
直方体の互いに向き合う面において法線面積分で使用する法線ベクトル(外側を向く)を内積の具体的な成分計算で使う時には符号がプラスマイナスで互いに逆になります。【例えば単位法線ベクトルなら(1,0,0)と(-1, 0, 0)、法線ベクトルの大きさを面積元素とすれば(dydz, 0, 0)と(-dydz, 0 ,0)】
直方体は微小であり、1つの面での電場ベクトルは1つに代表させています。

磁場の場合

磁場の場合もやり方は同じです。

$$ガウスの発散定理により\int_S\overrightarrow{B}\cdot d\overrightarrow{s}=\int_V \mathrm{div}\overrightarrow{B}$$

$$\int_S\overrightarrow{B}\cdot d\overrightarrow{s}=0 より、\int_V \mathrm{div}\overrightarrow{B}=0$$

この場合も、「任意の積分領域Vに対して」積分するとゼロという式なので、
積分する前からの話として div\(\overrightarrow{B}\)=0 でなければそれは起こり得ない事になります。
(※磁場が恒等的にゼロなのではなくて、「静磁場としてあり得る任意の形に対して、ベクトル場の発散を考えると必ずゼロになる」という意味です。)

ガウスの法則をクーロンの法則から導出する(電場の場合)

ガウスの積分と発散定理からの導出 
逆にガウスの法則からクーロンの法則は導出可能?の問題 
磁場の場合にもガウスの法則を導出可能?の問題

ガウスの積分と発散定理からの導出

電場とは「+1[C]の電荷が他の電荷から受ける力」と定義して定めた量ですので、クーロンの法則で片方の電荷の電気量を1としたものとして式で表せます。

$$電場の大きさ:E=\large{\frac{kQ}{r^2}}=\large{\frac{Q}{4\pi\epsilon_0r^2}}$$

$$ベクトルの場合:\overrightarrow{E}=\large{\frac{Q}{4\pi\epsilon_0r^2}}\cdot\frac{\overrightarrow{r}}{r}=\large{\frac{Q}{4\pi\epsilon_0r^3}}\overrightarrow{r}$$

さてこれを見ると、「距離の逆2乗に比例するベクトル場」ですから、
法線面積分を考えれば「ガウスの積分」の公式を使用できます。

ここでの場合、電荷を囲む閉曲面を考えますから、公式で言うと「原点が閉曲面の内側にある場合」です。この時にガウスの積分の値は、極限値として\(4\pi\) になります。

ところで、上記の電場ベクトルでは、Q/(\(4\pi \epsilon\)0) という部分は比例定数です。そこで、残りの部分がガウスの積分におけるベクトル場と同じ形という事になります。

という事は、上記の電場ベクトルを電荷を囲む閉曲面で法線面積分すると、次の計算結果になります。

$$\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\large{\frac{Q}{4\pi\epsilon_0}\frac{\overrightarrow{r}}{r^3}}\cdot d\overrightarrow{s}=\large{\frac{Q}{4\pi\epsilon_0}}\cdot 4\pi=\large{\frac{Q}{\epsilon_0}}$$

つまり、電場に関するガウスの法則の積分形になります。【導出終わり】

尚、閉曲面の外に電荷があるような場合を考えたとして、同じように法線面積分を考えたとすると、ガウスの積分の公式により、法線面積分の値は0になります。
ただしその場合にはむしろ、物理的には「閉曲面内に電荷は存在しない」という解釈になるでしょう。

★ガウスの積分の公式においては「基準とする原点で関数を定義できない」という事で極限値を考えるわけですが、これはどちらかというと数学的な捉え方であり、
物理学では敢えてそのようには考えずに「デルタ関数」という特殊な関数を使う事で、
原点における電場の扱いの理論的整合性をとるという考え方をする場合もあります。

★「立体角」を使って電場に関するガウスの法則を説明・導出する方法もあります。ただし立体角の数学的な定義は、ガウスの発散定理の成立を前提にしています。その点には注意が必要です。

ガウスの積分の値を計算する公式の証明では、ベクトル場の発散の具体的な計算と、球の表面積の公式を使用します。

逆にガウスの法則からクーロンの法則は理論的に導出可能?の問題

上記の説明は電場に関して「クーロンの法則が成立→ガウスの法則が成立」という事が数学的には導出可能である事を述べたものですが、
物理学的にも数学的にも、もう少しだけ詳しく言うとクーロンの法則は理論的には、
①電場に関するガウスの法則
②静電場の渦無しの法則(電場の「回転」が0、数式だと rot\(\overrightarrow{E}\)=0)
③無限遠でベクトル場の大きさが距離の逆2乗の程度の収束の速さで0に近づく
という3条件が全て成立している事と等価である式になります。

つまり、逆に「ガウスの法則が成立するならクーロンの法則も直ちに成立すると理論的に言えるか?」という問題に関しては、「渦無しの法則と、無限遠での条件を課せばそうである」という事になります。

※静電場に関する渦無しの法則の形は、磁場の時間変動がある場合には電場の回転はゼロ以外の値になるという式に変わります。それは発電機で電気を発生させる原理である電磁誘導の法則であり、マクスウェル方程式の1つになります。$$磁場の時間変動がある場合(電磁誘導):\mathrm{rot}\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$$この式で静磁場の場合(時間による偏微分がゼロ)であれば、静電場の渦無しの法則と同じ式です。

磁場の場合にもガウスの法則を導出可能?の問題

では磁場の場合はどうでしょうか。
実は磁場に関しても、その大きさが距離の逆2乗に比例するという実験結果があります(それもクーロンの法則とも呼ばれます)。

しかし磁場の場合には実は話が少し変わってきて、
静電場におけるクーロンの法則に対応するものは、ビオ・サバールの法則と言って外積(クロス積)を使って表された形をしており、接線線積分で書かれます(あるいは微小部分に対する形式でも書かれます)。
これは磁石ではなく電流により発生する磁場を記述したものです。(別途にアンペールの法則というものもあります。)
磁場に関するガウスの法則の積分形は、「ビオ・サバールの法則から導出できる」というのが磁場の場合の一般的な理論になっています。

上記でも少し触れましたが、電流により発生する磁場は軸対称(ここで言う軸とは電流の向きを表す直線)で同心円上にて等しい値になる事から、磁場の発散 div\(\overrightarrow{B}\) がゼロになる事、つまり磁場に関するガウスの法則の微分形のほうを先に述べるという事もあります。
磁場の大きさが電流の向きに対して軸対称になる事を使うのは、ビオ・サバールの法則を基本に考える場合も実は同じです。

磁石による磁場を考える場合には、単独の電荷に相当する「磁荷」を実験的に見出せず、
N極とS極の対(「磁気双極子」)が必ず現れるというのが基本認識になっています。
ところで、その磁気双極子が板状の磁石に一様に分布していると仮定すると、
実は「磁石が作る磁場も(微小な)環状電流が作る磁場と同じ形になる」という事を理論的に示せるのです。そこで、磁石が作る磁場に関しても同様に、
磁場に関するガウスの法則が成立する、という理論的な流れがあります。

磁石に関しては、物質の磁性の観点から理論的に話を突き詰めようとすると実は話が結構面倒で、電磁気学だけでなく量子力学の理論もどうしても必要になるというのが物理学の理論の現在の見解になっています。

ガウスの法則が成立する由来に関する、数式的な考察。
理論的には、電場の場合と磁場の場合とでは少しだけ話が違ってくると考えられています。
磁場のほうに関して、この図で、i:電流 l(エル):電線の長さ ×:外積(ベクトル積)の記号
静磁場を囲む閉曲面での法線面積分がゼロになるのは「磁気単極子は単独で存在せず、必ず磁気双極子の形で現れる」という事を表すとも解釈できます。

真空の誘電率に関わる円周率とガウスの法則との関係

さて、最後にクーロンの法則の比例定数を円周率を含んだ形で表す事がある事について、ガウスの法則との関連からの理由を考察してみましょう。

前述の「クーロンの法則からガウスの法則を導出する方法」を見ると、
途中で使っている「ガウスの積分」の公式には球の表面積由来の円周率が含まれていますが、
結果のガウスの法則の式には円周率は含まれていません。

これはもちろん、クーロンの法則のほうの比例定数を「円周率の逆数と別の比例定数の積」の形で表していたので、式の中で円周率が分子と分母で約分されて「1になって消えた」ためです。

逆に、もしクーロンの法則の比例定数を一括でkで表した場合には、ガウスの法則には見かけ上、円周率がくっついて来るわけです。(もちろん、定数の数値的な値自体はどちらの場合でも同じです。)

◆比例定数に円周率を含まなかった場合のガウスの法則の形

$$\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\int_S\large{\frac{kQ\overrightarrow{r}}{r^3}}\cdot d\overrightarrow{s}=kQ\cdot 4\pi=4\pi kQ$$ 尚、この結果の状態でk=1/(4\(\pi\epsilon_0\)) を代入しても、もちろん一般的なガウスの法則の形になります。

つまり、敢えて「円周率を含んだ比例定数」を考える事により、クーロンの法則からガウスの法則を導出した時に、逆に「円周率を定数として含まない形で記述できる」という、ちょっとした数式上のカラクリがあるわけです。
図形的な球や球面に由来して、円周率が隠れた形で物理学の理論に関わってくる例の1つになります。

ガウスの積分【距離の逆2乗に大きさが反比例するベクトル場】

ガウスの発散定理の応用として、「ガウスの積分」と呼ばれる定積分があります。
また、そのガウス積分の応用例として、電磁気学における「ガウスの法則」をクーロンの法則から数式的に導出する理解の仕方があります。

関連(基本知識):■ベクトルと内積 ■微分の公式集 ■積分の基本計算

関連(応用):■ベクトル解析 ■法線面積分 ■ガウスの発散定理

◆非常に名称が紛らわしいのですが、用語の使い分けは次のようになります。

  • ガウスの発散定理」(ガウスの定理)
    数学の定理で、法線面積分と体積分について成立する一般的な関係
  • ガウスの積分」【このページで説明している公式】
    数学で公式が存在する法線面積分(の定積分)で、対象の関数は
    「大きさが距離の2乗に反比例する3次元のベクトル場」
    (ベクトル場とは成分が座標 x, y, z を変数とする多変数関数であるベクトル関数)」
  • 「ガウスの法則」
    物理上の電荷に対する定量的な法則で、クーロンの法則のより一般的な表現。
    数式的に、上記2つの事項と直接的に関わる。

ガウスの積分(公式)

ガウス積分とは、ベクトル場の大きさが「原点からの距離の逆2乗に比例する」(※)形である場合の、閉曲面全体に対する法線面積分の事を指します。
すなわち、式で書くと次のベクトル場に対する閉曲面全体に対する法線面積分です。(簡単のため、比例定数は1とします。)

※「距離の逆2乗に比例する」=「距離の2乗に反比例する」
いずれも1/(r) が掛け算されている事を意味します。

$$r=\sqrt{x^2+y^2+z^2}\hspace{3pt}のもとで、\overrightarrow{r}=\left(\frac{x}{r^2}\hspace{2pt},\hspace{2pt}\frac{y}{r^2}\hspace{2pt},\hspace{2pt}\frac{z}{r^2}\right)\hspace{2pt}に対して、$$

ガウスの積分

$$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}\hspace{5pt}をガウスの積分と言います。$$

☆ここでの「距離の『3乗』」は、全体のベクトルの向きを単位ベクトルで表す都合上出てくる、見かけ上のものです。中身としては、大きさが1の単位ベクトルを作るための1/rと、考えている対象の関数の1/(r)の積という事になります。

この時に閉曲面Sはどんな形でも、どんな場所にあってもよいのですが、
どのような閉曲面に対してであろうと、ガウス積分が取り得る値は3つしかないという公式があります。

公式:ガウスの積分の計算結果

原点と閉曲面の位置関係によって結果が分かれます。

  1. 原点が閉曲面Sの「外側」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0$$
  2. 原点が閉曲面Sの「曲面上」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=2\pi$$
  3. 原点が閉曲面Sの「内側」にある場合: $$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=4\pi$$

2番目(曲面上)と3番目(曲面の内部)の結果は、より詳しくは、ある極限値としてこの結果が成立します。また、物理学ではこのようには説明せず、値が無限大になってしまう点を「特別扱い」できるデルタ関数という特殊な関数を使ってここで説明する内容を表現する事も多いです。

物理学への応用:電磁気学における「ガウスの法則」

ガウスの積分の応用として代表的なものが、電磁気学における「ガウスの法則」です。クーロンの法則を一般化した法則で、4つのマックスウェル方程式のうちの1つで静電場についての式です。

電磁気学におけるガウスの法則

電荷(※)を囲む閉曲面をSとする時、
法線面積分を計算すると必ず次のようになっているという関係がガウスの法則と呼ばれています。 $$\large{\int_S\overrightarrow{E}\cdot d\overrightarrow{s}=\frac{Q}{\epsilon_0}}$$ $$\epsilon_0 はクーロン力を表す時に使う比例定数で、\epsilon_0=8.8543×10^{-12}$$ ※ここで言う「電荷」は、点電荷でも、分布した電荷でも同じ結果になります。

この法則の内容を言葉で簡単に言うと、静電荷を囲む閉曲面を領域を考えるとき、その閉曲面がどんな形状であろうとも法線面積分の値は「内部の電荷の電気量のみに依存する」という事です。

「ガウスの法則」は物理学上の法則なので「とにかく成立する」で終わり、でもよいのですが、クーロンの法則が電荷同士の距離の逆2乗に比例する形である事から、法線面積分を計算するとガウスの積分の形になっています。

そのため、クーロンの法則から出発して電場(+1[C]の電荷が受ける電気力)の法線面積分を計算するとガウスの法則の形が得られるという論理も成り立つのです。

公式の証明

では、ガウスの積分に関して成立する公式の証明をしてみましょう。

次の3つの場合分けがあります。

原点が閉曲面の「外側」にある場合
原点が閉曲面の「曲面上」にある場合
原点が閉曲面の「内側」にある場合 

この証明にはガウスの発散定理の結果と、ベクトル場に関する発散(div)の計算を使います。

$$以下、対象とするベクトル場を F=\frac{\overrightarrow{r}}{r^3}とおきます。$$

①原点が閉曲面の「外側」にある場合

この場合、ここで対象のベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を強引に計算すると、実は必ず0になるという結果が得られます。

計算は少し込み入って面倒ですが、高校の微積分の知識と、偏微分の定義(1つの変数だけに着目し、他の変数は定数扱いする)だけ知っていれば計算する事ができます。

まず、面倒なのを承知でrをx、y、zでの表現に戻します。

$$r=\sqrt{x^2+y^2+z^2}=\large{(x^2+y^2+z^2)^{\frac{1}{2}}}ですから、$$

$$\overrightarrow{F}=\large{\frac{\overrightarrow{r}}{ r^3}}=\Large{\frac{1}{ (x^2+y^2+z^2)^{\frac{3}{2}}}\overrightarrow{r}}$$

次に、ベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を計算します。
この時に、座標成分が具体的にx、y、zで表される必要がさらにありますから、
\(\overrightarrow{r}\)を成分で表します。
しかし、そもそもこのベクトルの座標成分をx、y、zとおいていたのですから、
そのまんま\(\overrightarrow{r}=(x,y,z)\)という形になります。

ですから、考察対象のベクトル場\(\overrightarrow{F}\)を成分で表すと次のようになります。

$$\overrightarrow{F}= \large{ \frac{\overrightarrow{r}} { (x^2+y^2+z^2)^{\frac{3}{2}} } }\large{ = \left( \frac{x}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{y}{(x^2+y^2+z^2)^{\frac{3}{2}}}, \frac{z}{(x^2+y^2+z^2)^{\frac{3}{2}}} \right)} $$

これで、ベクトル場の発散 \(\mathrm{div}\overrightarrow{F}\)を計算できる「はず」ですね。
面倒ですが丁寧に計算すると前述の結果を得るのです。

1つずつ、成分を偏微分してみると次のようになります。
商の微分公式と、合成関数の微分公式(※)とを使って丁寧に微分します。

(※この場合は、x、y、zは互いに独立変数ですから、合成関数の公式は偏微分に関する合成関数の公式ではなく、通常の1変数関数の合成関数の微分公式を使います。仮に、x=g(y,z) のように表せるのであれば偏微分の合成関数の公式を使う必要があります。ここでの場合は、そうではなくて3変数が互いに独立であるという事です。)

では計算です。
商の微分公式そのままであり、分母は2乗されて、分子は引き算の形で2つ項ができます。その際の微分する時に(通常の)合成関数の微分公式を使っています。

$$\large{ \frac{\partial}{\partial x} \frac{x}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- x\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2x } {(x^2+y^2+z^2)^3} }$$

yとzについても同様です。

$$\large{ \frac{\partial}{\partial y} \frac{y}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- y\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2y } {(x^2+y^2+z^2)^3} }$$

$$\large{ \frac{\partial}{\partial z} \frac{z}{(x^2+y^2+z^2)^{\frac{3}{2}}}= \frac{ (x^2+y^2+z^2)^{\frac{3}{2}}- z\cdot \frac{3}{2}(x^2+y^2+z^2)^{\frac{1}{2}}\cdot 2z } {(x^2+y^2+z^2)^3} }$$

これらを加え合わせたものが div \(\overrightarrow{F}\)であり、
(x+y+z1/2で因数分解できる事に注意すると次のようになります。

$$\mathrm{div}\overrightarrow{F}=\frac{ 3(x^2+y^2+z^2)^ {\large{\frac{3}{2}}} -3x^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} -3y^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} -3z^2(x^2+y^2+z^2)^ {\large{\frac{1}{2}}} } {(x^2+y^2+z^2)^3}$$

$$=\frac{(x^2+y^2+z^2)^{\large{\frac{1}{2}}}(3x^2+3y^2+3z^2-3x^2-3y^2-3z^2)}{(x^2+y^2+z^2)^3}=0【計算おわり】$$

このように、計算は結構面倒ですが「結果は0」という事になります

さてここで、ガウスの発散定理によればベクトル場の法線面積分は「ベクトル場の『発散』の体積分に等しい」という事でした。
--しかし、となると「計算結果が0になる関数」の積分ですから、これは必ず0になると言えます。(通常の積分でも体積分でもこの点については同じ事が言えます。)
それで証明が完了するのです。

$$\int_S\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_V\mathrm{div}\frac{\overrightarrow{r}}{r^3}dv【∵ガウスの発散定理】$$

$$=\int_V\hspace{3pt}0\hspace{3pt}dv=0【証明おわり】$$

ただしこの結果は、「原点が閉曲面の外側にある」場合の話である事には注意が必要です。
閉曲面上にある場合や、閉曲面の内側にある場合には別の結果になるのです。

②原点が閉曲面の「曲面上」にある場合

原点が閉曲面上にある場合でも、ベクトル場の発散 div \(\overrightarrow{F}\) を計算すると「0」になるという事は同じです。

しかし、1つ問題があって、このベクトル場\(\overrightarrow{F}\)は、「原点 (0,0,0)【つまりx=y=z=0の時】で定義できない」という事があります。

従って、関数を定義できないその点が閉曲面上にあるという事は、そもそも法線面積分を考える閉曲面Sについて、通常の閉曲面とは違うものを考える必要があります。

具体的には、原点が乗っている点を除いたものをそもそも考えなければならず、もとの閉曲面から原点付近のわずかな領域を除いた部分を改めて閉曲面Sとします。

ただし、この時に除かれる「原点を含む領域」は、その大きさに関わらず、残った閉曲面における法線面積分の値は一定で\(2\pi\)になる
 というのが公式のより詳細な内容です。
つまり、そのような領域の大きさを0にする極限においても値は一定で\(2\pi\)になる、という事です。

$$★この議論は、もちろんベクトル場が F=\frac{\overrightarrow{r}}{r^3}である前提のもとでの話です。$$

この時に、原点を含む「面だけ除く」事はできなくて、体積を持った領域ごと除く事になります。そして、その領域の形状は「半球」とするのがポイントなのですが、これには理由が2つあります。(上手にきれいな半球を繰り抜けるかどうかは、閉曲面を多面体に近似することで可能になります。)

  1. 球面であれば、曲面に対する法線とベクトル場の方向が同一直線上に重なり、法線面積分を直接計算できる。
  2. どのような形状の領域でも、除いた部分の法線面積分はある一定値である事が示される。つまり、球面で計算した時の値と他の形状で計算した時の値は必ず同じである。

2番目の理由についての根拠は、原点を含む領域を境界を共有する形で2つの形状で取り除いてみた時に、新しくできる「閉曲面」(滑らかでない部分はありますが)から見て原点が「外部」にある事によります。この時に、考えているベクトル場のもとでは法線面積分は0になります。
さらに、その新領域が異なる2つの形状に由来するSとSに分けられるとすると、元々考えていた大きな領域Sから見た時の「外側に向かう方向」が、繰り抜いた部分だけを考えてできた閉曲面においては「SとSの片方は『外側向き』でもう片方は『内側向き』」となります。
つまり、ややこしいですが、法線面積分について片方の符号を変えたものを加えた合計が0、結果的には引き算したものが0になります。
――という事は、2つの法線面積分は等しい値(符号も含めて)になる、という事です。

$$★この議論は、もちろんベクトル場が F=\frac{\overrightarrow{r}}{r^3}である前提のもとでの話です。$$

$$\int_{SA}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s} -\int_{SB}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0\Leftrightarrow \int_{SA}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{SB}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}$$

さて、そこで除外する微小領域として半球を考えると、原点を中心にする半球を考えるのですから、半径をρとすると球面の各点でベクトル場の大きさは等しく、1/(ρ)となります。方向については、各点で球面に垂直で外側向きですから、法線との内積は1となり、面積sを変数とする通常の定積分になるのです。

通常は、面積sを変数とする関数というのはすごく考えにくいものなのですが、この場合について言えば半径ρというのは何らかの定数を考えているのであり、変数としての面積sに無関係であるから定数扱いです。従って積分の原始関数は「1次関数s」です。これを、0から\(2\pi\rho^2\)(半球の表面積)まで積分すればよく、結果は\(2\pi\rho^2\)です。

$$\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\frac{1}{\rho^2}\int_{S0}ds=\frac{1}{\rho^2}\left[s\right]^{\large{2\pi\rho^2}}_0=\frac{1}{\rho^2}\cdot 2\pi\rho^2=2\pi$$

こういう結果であり、半径の大きさに関わらず値は一定値という事になります。

さて、さらに元の閉曲面Sから半球Sを繰り抜いて原点の周りだけ少しへこんだ形になった閉曲面を改めてSとします。このSから見ると、原点は外部に存在します。従って、Sに対する法線面積分の値は0です。

しかし他方で、Sに対する法線面積分はSの法線面積分(半球部分除く)と符号を変えたSの法線面積分(半球面)の合計値です。

のほうの符号を変えるのは、原点を中心に半球を単独で考察した時と、元々の大きな閉曲面Sで考えた時の「外側への向き」が逆になってしまうためです。結果的に引き算する形となります。

$$\int_{S1}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0かつ、\int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}-\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{S1}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}$$

$$よって、\int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}-\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=0 \Leftrightarrow \int_{S}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=\int_{S0}\frac{\overrightarrow{r}}{r^3}\cdot d\overrightarrow{s}=2\pi$$

ここで、繰り抜く半円の半径は任意の値でこの事が成立するのでしたから、半球の半径ρ→0の極限でも同じ値であり、その意味においてガウス積分の公式が成立します。

③原点が閉曲面の「内側」にある場合

閉曲面の内部に原点がある場合にも、閉曲面上に原点がある場合と同じ問題が発生します。

法線面積分を考える分には、一見すると「値が無限大になってしまう原点」は積分経路から外れていますが、ガウスの発散定理から法線面積分は体積分で表せる「はず」ですから、
体積分を行う領域内で問題が発生します。

つまり、この場合も定積分を実行するには極限値を考える必要があります。

結論を言うと、本来の全体の領域から「原点を囲む微小な球をくり抜いて除いた」ようなものを領域として考えます。

ガウスの積分において原点で領域を定義できないので、
原点を含む領域を球状に除いて、球の半径を0に近づけた時の極限値として
ガウスの積分の値を計算します。

その原点を囲む球状の領域では、上記の場合と同じ考え方により、法線面積分は球の半径にかかわらず一定値になります。この場合の値は\(4\pi\)です。そこで、半径を限りなく小さくしてもその値として計算できるので、極限値として最初に考えていたガウスの積分の値も\(4\pi\)になる、という事です。

原点が想定している領域の表面上にある時との2倍の差は、「球」と「半球」の違いであるという事になるわけです。

【群論】可解群の性質

可解群(solvable group)とは、群に対して交換子群列を作った時に
(G)={e}【単位元だけからなる】となる自然数kが存在する群Gの事です。以下、D(G)(=D(G))はGの交換子群で、D(G)=D(D(G))、D(G)=D(D(G))、・・・等とします。

◆可解群に関しては、次の定義をする事もあります:
群Gに対して有限個の正規部分群の列Hがあり【jは自然数、H=G】、次のようにGの正規部分群同士でもHはHj-1の正規部分群になっているものとする。$$G=H_0\triangleright H_1 \triangleright H_2\triangleright H_3\triangleright \cdots\triangleright H_{n-1} \triangleright H_n=\{e\}$$さらに剰余群Hj-1/Hは可換であるとする。このような時、Gを可解群と呼ぶ。
この定義は、実は交換子群を使った方の定義と同等のものです。以下の議論では交換子群を使ったほうの定義で話を進めていきます。

可解群の性質7つ

可解群のいくつかの重要な性質をまとめると次のようになります。

可解群とその性質

交換子群列を作った時に$$G\supset D_1(G)\supset D_2(G)\supset D_3(G)\supset \cdots\supset D_k(G)=\{e\}$$ となる自然数kが存在する時にGを可解群と言い、次の性質があります。

  • 可換である群は全て可解群である。
  • 可解群の部分群も可解群である。
  • 可解群の剰余群も可解群である。
  • Gの正規部分群Nに対して、Nと剰余群G/Nが共に可解群ならばGも可解群となる。
  • Gの正規部分群Nに対して、剰余群G/Nが可換群になる必要十分条件は、NがD(G)を含む事【N⊃D(G)】である。
  • 可解群の交換子群列のうち、隣り合うもの同士の剰余群Dj-1(G)/D(G)
    【D(G)/D(G)等】は可換群である。
  • 可換群を交換子群列で定義したものとGの正規部分群の列で定義したものは、必要十分条件で結ばれるので互いに同等である。

言葉として「可換」と「可解」が似ていて紛らわしいので注意。

以下、証明をしていきます。

①可換である群は全て可解群

まず最初は簡単です。
{e}の交換子を作ってもeにしかならないので、交換子群列は一度{e}になるとその先の交換子群はずっと{e}です。可換群はそもそも任意の交換子が単位元eであるわけですから、「可換群は可解群である」と言えます。

②可解群の部分群も可解群

2番目については集合としての包含関係を丁寧に見て行きます。
交換子についてHがGの部分群であれば、Gの交換子群にはHの元で作った交換子も全て含まれるので、D(G)⊃D(H)です。【交換子群列の中ではこれはD(G)およびD(H)】
すると、今度はD(G)の交換子群とD(H)の交換子群についても同じ事が言えるわけですから、D(G)⊃D(H)です。
以下同様にして任意の自然数jについてD(G)⊃D(H)です。
ここで、Gが可解群であればD(G)={e}となるkが存在するので、
その番号において{e}⊃D(H)であり、
それを満たせるのは同じく単位元だけからなる群しかないのでD(H)={e}であり、従ってHも可解群である事を意味します。

③可解群の剰余群も可解群

3番目は、剰余類と剰余群の性質を丁寧に扱う必要があります。
次にNをGの正規部分群として剰余群G/Nの交換子を考えます。
Gの元xとyを使って、交換子群D(G/N)の元は
(Nx)-1(Ny)-1(Nx)(Ny)=N(x-1-1xy) と書けます。
【D(G/N)もまた剰余類を元とする群であり、N=Neを単位元とする。】
ここで2つの元の積を元とする別の群ND(G)={nb|n∈N,b∈D(G)}を考えると、
これはNを正規部分群に持つ群となりNによる剰余群を定義できます。
【※一般に、HがGの部分群で\(G\triangleright N\)である時、NはNHの部分群であり、任意のs∈NH(⊂G)に対してsN=Nsとなる(任意のt∈Gに対してそうだから)ので、NはNHの正規部分群。
このタイプの群に対する剰余群は、(NH)/Nの事をNH/Nのように書きます。】
剰余群ND(G)/Nの元はN(nb)=(Nn)bですが、
Nが群でn∈Nに対してNnは集合としてはNとして全く同じ物になるので、N(nb)=Nb=N(x-1-1xy)
よって、全く同じ元を持つのでD(G/N)=ND(G)/N
他方、D(G/N)の元uとwを使うとD(G/N)=N(u-1-1uw) ですが、
剰余群ND(G)/Nの元は先ほどと同じくn∈Nを考えると
N(nu-1-1uw)=(Nn)(u-1-1uw)=N(u-1-1uw) となり、
(G/N)=ND(G)/N という事にもなります。
全く同じ論法で、任意の自然数jに対してD(G/N)=ND(G)/N が成立します。
すると D(G)={e}となるkにおいて、
ND(G)/N の元はN(ne)=Ne=N【剰余群の単位元】ただ1つという事になり、
(G/N)=ND(G)/N=N となってG/Nも可解群であるという結果になります。

④正規部分群Nと剰余群G/Nが共に可解群 ⇒ Gも可解群

次に4番目の性質ですが、これも1つ1つの式を丁寧に紐解きます。
G/NとNが共に可解群である場合には、
①:Dk1(G/N)=Ne=N かつ
②:Dk2(N)={e}
となる自然数kとkが存在します。
この時、前述において示した事からDk1(G/N)=NDk1(G)/N であるわけですが、
k1(G/N)=NですからN=NDk1(G)/Nという事になり、
実はDk1(G)⊂Nが成立しています。
【※n∈Nおよびb∈Dk1(G)として、NDk1(G)/Nの元N(nb)=Nb は集合としてNに等しくならないといけないので、bはNの元である必要があります。それがDk1(G)⊂Nの意味です。】
すると、Dk2(N)⊃Dk2(Dk1(G)) です。
ここで、Dk2(Dk1(G))とは
「すでにGから始めてk回交換子を作る演算を行ってできた交換子群に対し、
そこを起点として改めてk回交換子を作る演算を行ってできた交換子群」です。
従って、Gから始めて(k+k)回の交換子を作る演算を行ったDk1+k2(G)に等しいという事です。
よってDk2(N)⊃Dk2(Dk1(G))=Dk1+k2(G)であり、
k2(N)={e}でしたから、{e}⊃Dk1+k2(G) であり、
これを満たすにはDk1+k2(G)={e}しかあり得ず、それを満たす自然数k+kが存在する事になります。よって、おおもとの群Gも可解群である事になります。

この4番目の性質について、特に次のような特別な場合には1つの命題が成立します。
以下、Hは群であるとします。

$$H_n\triangleright H_{n-1}\triangleright H_{n-2} \triangleright \cdots H_3\triangleright H_2\triangleright H_1\triangleright \{e\}$$

ここで、もし\(H_{j+1}\triangleright H_j\) が任意の自然数jについて成立し、剰余群Hj+1/Hが可解群であり、
またHも可解群であったとしましょう。

そのような特別な場合が発生する時、Hが可解群であり、H/Hも可解群ですからHも可解群です。
そしてH/Hも可解群なので、Hも可解群です。
同様にして、任意の自然数jについてHは可解群という事になります。
より具体的には、例えば剰余群Hj+1/Hが巡回群であれば可換群ですから可解群という事にもなります。そのようなタイプの群は、ベキ根で解ける多項方程式のガロア群を論じる時に出てきたりします。

⑤剰余群G/Nが可換群 ⇔ NがD(G)を含む事

【これは交換子群一般について言えます。性質として特に可解群に関係が深いです。】
5番目の性質については、まずG/Nの元の積を順番を変えて書いてみます。
xとyをGの元として、
(Nx)(Ny)=N(xy) と(Ny)(Nx)=N(yx) の2パターンありますが、
もしN(xy)=N(yx)であるのなら
【※ここでの括弧は分かりすくするためにつけているだけで、Nxy=Nyxと書いても同じ】
-1-1を右から乗じる事によって
N(xyy-1-1)=N(yxy-1-1) ⇔ N=N(yxy-1-1)
これが成立するためには、yxy-1-1がNの元でなければなりませんが、
yxy-1-1はGの交換子です。
【yxy-1-1の逆元はxyx-1-1
よって、G/Nが可換という事は任意のD(G)の元が例外なくNの元でもある事、
つまりD(G)⊂Nを意味します。
逆にD(G)⊂Nならば
N=N(yxy-1-1) ⇔ N(xyy-1-1)=N(yxy-1-1) のように逆にたどって、
右側からxyを乗じればN(xy)=N(yx)となり、剰余群G/Nは可換である事になります。

⑥交換子群列の隣り合う交換子群の剰余群は可換

6番目の性質については、交換子群列において例えばD(G)⊃D(G)のような包含関係があり、
しかもそれらは群と正規部分群の関係にあって\(D_2(G)\triangleright D_3(G)\) のようになっています。
そこで剰余群D(G)/D(G)の可換性を調べてみると、
(G)とは「D(G)の交換子群」なのでD(G)=D(D(G)) とも書けます。
集合が(群も含めて)等号で結ばれるという事は
「D(G)⊃D(D(G))かつD(G)⊂D(D(G))」という事ですから、
【上述の5番目の性質により】D(G)⊃D(D(G)) ⇔「D(G)/D(G) は可換である」事になります。
同じように任意の自然数jとj+1の交換子群についても
(G)=D(Dj+1(G)) ⇒ D(G)⊃D(Dj+1(G))
⇔「D(G)/Dj+1(G) は可換である」という事が言えます。
可解群の場合、最後{e}になっている部分についても同様に
{e}=D(Dk-1(G)) からDk-1(G)/{e}=Dk-1(G) が可換であるという事が言えます。
【{e}=D(Dk-1(G))という事自体から、
交換子群の性質によりDk-1(G)の任意の要素は可換であるとも言えます。】

あるいは、交換子群の性質により「G/D(G)は可換である」と言えるので、
これをD(G)/Dj+1(G)にも適用して示す事もできます。本質的に同じ証明です。

⑦2つの定義は同等である事

最後に7番目の性質として、2つの定義が同等である事を示します。
まず、交換子群列のほうの定義の場合での性質からDj+1(G)はD(G)の正規部分群であり、
剰余群D(G)/Dj+1(G)は可換であると言えるわけですから、
そのような部分群の列が存在するので
「交換子群列の定義 ⇒ 正規部分群と剰余群の可換性のみの定義」が言えます。

次に逆の場合です。$$G=H_0\triangleright H_1 \triangleright H_2\triangleright H_3\triangleright \cdots\triangleright H_{n-1} \triangleright H_n={e}$$の関係のもとで剰余群Hj-1/Hが可換であったとします。
この時には「G/Nが可換群 ⇔ D(G)⊂N」【上記5番目の性質】である事を思い出すと、
「G/Hが可換」なのでD(G)=D(G)⊂Hという事が言えます。
この時D(D(G))⊂D(H) ⇔ D(H)⊃D(G)でもあります。
【A⊂B ⇒ D(A)⊂D(B) 】
同様に「H/Hが可換」なのでD(H)⊂Hであり、先ほどのD(H)⊃D(G)と合わせると
⊃D(H)⊃D(G)が成立します。
以下、同様にH⊃D(G)、H⊃D(G)⊃D(G)⊃D(G)・・・・と続きます。
最後の部分でD(G)⊂H={e}となりますが、これはD(G)={e}を意味します。
よって、交換子群列の中で{e}となる交換子群が存在するので
「正規部分群と剰余群の可換性のみの定義 ⇒ 交換子群列の定義」が言えます。
よって、2つの定義は必要十分条件で結ばれるので同等な定義である事になります。