高階微分の応用:テイラー展開とマクローリン展開

今回は、高階微分と、その応用として重要なテイラー展開、マクローリン展開と呼ばれる無限級数展開について説明します。大学で物理や工学を学ぶ場合などは、非常に重要となる項目です。

このページの中盤以降では、マクローリン展開の事は Mcl .展開と略記します

まず、高階微分について簡単に説明し、その応用としてテイラー展開とマクローリン展開について述べます。最後に、関数がテイラー展開可能である条件として、数学的には剰余項と呼ばれるものが収束する必要があるので、その問題について述べます【これは数学上の問題で、物理等にはあまり関係のない問題です】。

後半、数学的にかなり詳しく述べている部分もありますが、詳しい証明や導出を知りたい人向けです。
そうでない場合は参考までに眺めていただければじゅうぶんです。

幾何級数と無限級数の基礎については別の記事で述べましたが、
今回はテイラー展開とマクローリン展開です。高階微分を用いた無限級数展開です。

高階微分とは?

高階微分」=「1つの関数を何度も微分する事」です。意味としては簡単ですので具体例などを見てみましょう。記号で書かれるとややこしく見えるところにだけ注意しましょう。

2階微分とは?高階微分(2階微分、3階微分・・)について
極限としての2階微分(2階導関数)および高階導関数の定義

2階微分とは?高階微分(2階微分、3階微分・・)について

2階微分とは、「2回」微分操作をするという事です。 同じく、3回微分操作した場合を3階微分、n回微分したも場合をn階微分と言い、まとめて高階微分と呼びます。導関数については、「n階導関数」のように表現します。
※たまたま日本語では「2階」と「2回」が同じ読み方なのでどちらで表現してもほとんど誤解はないと思いますが、一応用語としては区別されています。

2回微分するから2階微分・・というのは、決して試験用の語呂合わせではなく、日本語の漢字の読み方の偶然です。

例えば sin x の通常の微分(1階微分)は cos x ですが、
2階微分は -sin x で、3階微分は -cos x 、4階微分は sin x です。

  1. sin x → cos x [1回目の微分(=通常の微分、1階微分)]
  2. cos x → -sin x [2回目の微分(=2階微分)]
  3. -sin x → -cos x [3回目の微分(=3階微分)]
  4. -cos x → sin x [4回目の微分(=4階微分)]※元の関数に戻るわけです。

\(x^2\)の通常の微分(1階微分)は 2x であるわけですが、
2階微分は 2 で、3階微分は 0 です。(4階以上の微分も、全て 0 です。)

  1. \(x^2 \rightarrow 2x\) [1階微分]
  2. 2x → 2 [2階微分]
  3. 2 → 0 [3階微分]※定数の微分ですから、0ですね。

\(e^x\)は、1回微分すると \(e^x\) で元の関数と同じなので、
それをさらに微分した2階導関数も3階導関数も、全ての高階導関数について同じ形で \(e^x\) です。

このように、続けて公式を適用していけばいいだけなので、計算としては特別難しいものではありません。

ただ、数式としての表記方法だけ見ると、慣れないと少し難しく「見える」かもしれません。 しかし、意味するものは通常の微分の延長にあるだけという事が分かると、なじみやすいかと思います。

極限としての2階微分(2階導関数)および高階導関数の定義

極限として2階微分を考えた時の定義は次のようになります。「通常の微分(導関数)」をさらに微分するわけですので、1階微分の定義の関数の部分に、1階導関数を当てはめれば2階微分により得る2階導関数になります。

定義と表記 $$2階微分の定義:f^{\prime\prime}(x)=\frac{d^2}{dx^2}f(x)=\frac{d}{dx}\left(\frac{d}{dx}f(x)\right)=(f^{\prime}(x))^{\prime}=\lim_{h \to 0}\frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}$$

これが、2階微分(あるいは2階導関数)を定義で表した場合の式です。
初等関数に適用する場合などは、上記の例のように、公式により出されている1階の微分による導関数を単純に「もう1回」微分する事が行われるのが普通です。
3階、4階・・の微分についても、同様に考えます。例えば3階微分を定義式で(敢えて)表すのであれば次のような式になります。

$$3階微分の定義:f^{\prime\prime\prime}(x)=\frac{d^3}{dx^3}f(x)=\frac{d}{dx}\left(\frac{d^2}{dx^2}f(x)\right)=(f^{\prime\prime}(x))^{\prime}=\lim_{h \to 0}\frac{f^{\prime\prime}(x+h)-f^{\prime\prime}(x)}{h}$$
高階微分の表記方法

ある関数を2階微分している事を表す表記方法は、通常の1階微分にいくつもの表記方法があるように、同じく多くの表記方法があります。基本的には1階微分の表記方法に基づくものです。

$$2階微分の表記法:\frac{d^2y}{dx^2},\frac{d^2}{dx^2}f(x),\frac{d^2f}{dx^2},\frac{d^2f(x)}{dx^2},y^{\prime\prime},f^{\prime\prime}(x),f^{(2)}(x),d^2y/dx^2, \ddot{y}$$ 3階微分、n階微分の場合の表記方法は次の通りです。 $$3階微分の表記法:\frac{d^3y}{dx^3},\frac{d^3}{dx^3}f(x),\frac{d^3f}{dx^3},\frac{d^3f(x)}{dx^3},y^{\prime\prime\prime},f^{\prime\prime\prime}(x),f^{(3)}(x),d^3y/dx^3$$ $$n階微分の表記法:\frac{d^ny}{dx^n},\frac{d^n}{dx^n}f(x),\frac{d^nf}{dx^n},\frac{d^nf(x)}{dx^n},f^{(n)}(x),d^ny/dx^n$$

基本的には何階であっても表記の考え方は同じであるわけですが、階数が増えると、f(x) に「’ (プライム、ダッシュ)」をつける方法や、y の上に「・(ドット)」をつける方法は分かりにくいので、\(\frac{d^ny}{dx^n} や f^{(n)}(x)\)の表記が使われる事が多いのです。

高階導関数の表記方法を用いると、具体的な初等関数の2階微分やn階微分も、 $$\frac{d^2}{dx^2}\sin x=\frac{d}{dx}\cos x=-\sin x\hspace{10pt}\frac{d^n}{dx^n}e^x=e^x$$ ・・というふうに書けます。こういう書き方をすると難しく見えてしまうかもしれませんが、
重要なのは「決められた回数だけ微分操作を繰り返している」という事なのです。
もしとっつきにくいと感じた方も、そのように易しい形で理解していただければと思います。

高階微分って、何に「使う」の??

「2階以上の微分」というものは、一見すると何に使うのか分かりにくいかもしれません。
具体例を見てみるのが、最も分かりやすいと思います。
例えば、「2階微分」を用いる最も簡単な応用例は、物理の力学の「運動方程式」です。
物理では、時間を変数としたうえで、次の解釈が適用される事が重要です。

  • 速度は位置座標の1階の時間微分:\(v=\frac{dx}{dt}\)
  • 加速度は位置座標の2階微分(速度の1階微分):\(a=\frac{d^2x}{dt^2}=\frac{dv}{dt}\)
    ※ここでの a は、定数ではなくて、加速度(acceleration)です。
    ※細かい事を言いますとじつは物理では「ベクトルの微分」を考えるのですが、ここでは簡単のため1次元の速度と加速度を例として挙げています。

「運動方程式を解く」という事は、「2階の微分を含む『微分方程式』」を解くという事ですので、例えばそこで2階微分の考え方が用いられるわけです。

また、このページで次に述べるテイラー展開も物理や各種の工学などで重要です。これは1階および高階の微分を用いた無限級数による関数の表現方法になります。

テイラー展開とマクローリン展開

高階微分の応用として重要なテイラー展開とマクローリン展開について述べましょう。
数学的には、1段階前のテイラー公式というものがある事が重要です。

微分法はそもそも、関数のある点の近傍における近似1次式としての意味があります。そこで、1次式だけでなく、2次式、3次式の近似や、最終的には無限項の多項式で関数を近似しようという発想で、関数を多項式によって無限級数展開するのが、テイラー展開です。(平均値の定理の拡張と見る事もできます。)

テイラー展開とは? ■ マクローリン展開の一覧表 ■ テイラー公式の証明

関数の x = a における「テイラー展開」とは?

このテイラー展開では、通常の微分と、高階微分による微分係数(x = a におけるf'(a), f”(a)など)が用いられます。一見とっつきにくいかもしれませんが、具体的な初等関数のテイラー展開は、このページの前半でも述べた微分公式を使って係数を出していけばいいだけですので、決して難しいわけではありません。

テイラー展開 関数 f(x) のテイラー展開とは、次のような無限級数展開の事を言います。 $$f(x)=\sum_{n=0}^{\infty}\frac{(x-a)^n}{n!}f^{(n)}(a)={\small f(a)+(x-a)f^{\prime}(a)}+\frac{(x-a)^2}{2!}f^{\prime\prime}(a)+\frac{(x-a)^3}{3!}f^{\prime\prime\prime}(a)+\cdots$$

この形で表された無限級数展開を、x = a におけるテイラー展開と言います。
このようなテイラー展開を行う時、「x = a のまわりでテイラー展開する」という言い方もします。
これは、テイラー展開が x = 0, x = 1, x = 2, ・・など、任意の x の値における微分係数で表現できるという事です。

注意と参考:数学的には「剰余項」を含む段階の「テイラー公式」があります

解析学的においては、上記の形の式が n で終わる有限項の和に「剰余項」Hn(x)を加えたものをまず考えます(テイラー公式と呼ばれる事があります)。この剰余項が n→∞ でゼロになればテイラー展開の形になります。
$$テイラー公式:f(x)=\left(\sum_{j=0}^{n}\frac{(x-a)^j}{j!}f^{(j)}(a)\right)+H_n(x)$$ 初等関数では多くの場合に、この剰余項は n →∞ の極限で 0 になるので応用の面ではそこまで気にしなくてもいいのですが、収束する「xの範囲」が限定される場合もあります。
この剰余項の収束問題については、このページの後半で詳しく説明しましょう。

テイラー展開の式に \(a=0\)を代入したものがマクローリン展開と呼ばれる公式です。

マクローリン展開展開

x=0におけるテイラー展開がマクローリン展開です。
x=0における微分係数、高階微分係数を考えます。

$$f(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!}f^{(n)}(0)=f(0)+xf^{\prime}(0)+\frac{x^2}{2!}f^{\prime\prime}(0)+\frac{x^3}{3!}f^{\prime\prime\prime}(0)+\frac{x^4}{4!}f^{\prime\prime\prime\prime}(0)+\cdots$$

以下、マクローリン展開の事は Mcl .展開と略記します

Mcl . 展開は、「テイラー展開の中でも、特によく用いられる形」・・という事になりますが、その理由は単純で、式の形が簡易になるためです。x = 0 という使いやすい場所での計算をしたいがため、物理などでも多く使われるのです。
物理等では、よほどの精度を求めない限り、3次や4次などの高階の部分は「ほとんど0」とみなせる場合をわざと考察する事も多いです。

指数関数や三角関数の Mcl .展開は、物理等への応用でも純粋数学的にも重要です。
例えば、ほんの1例ですが、自然対数の底 e の値が2.718・・である事や無理数・超越数である事の証明には Mcl .展開を用います。半端な変数における三角関数の具体的な値を知るのにも Mcl .展開を使えます。

$$e^x=1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots$$

$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots$$

$$\cos x=1-\frac{x^2}{2}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots$$

後述しますように、この形の無限級数展開を導出するには、部分積分を用いるやり方が比較的簡単です。部分積分は積の微分公式から導出される積分公式で、微分の関係をうまく使います。テイラー展開の各分母の階乗も、単項式の微分由来です。

参考までに、テイラー展開には、大学数学の解析学的には「一意性」がある事が重要です。どういう事かと言いますと、同じ「『多項式の形』の無限級数」(整級数と言います)で表される関数がある場合、同じ関数を表すのであれば、各\(x, x^2, x^3, \cdots\)の係数の表し方は「1通りしかない」という数学的事実があるのです。
(※微分以外の方法では決して表せないという事ではなくて、微分以外の方法で表せたとしても、じつは微分で表したテイラー展開に一致する、という意味です。)
これは、微分の範囲を複素数まで広げた場合などで、結構理論的には重要になります。

★参考

テイラー展開の一意性については、じつは\(f(x)=A_0+A_1(x-a)+A_2(x-a)^2+\cdots\) の形の無限級数を微分したうえでx→ a の極限を考えれば、かなり簡単に分かる事なのです。
そのように無限級数を直接微分する事を「項別微分」と言います。
しかし、じつはこの項別微分という計算は「できる場合とできない場」合があります。
\(f(x)=A_0+A_1(x-a)+A_2(x-a)^2+\cdots\) の形の無限級数(整級数と言います)は、「一様収束性」という性質があるので項別微分が可能なのです。これについては自明ではないので解析学的な証明が必要です。

\(\frac{1}{1-x}\)のテイラー展開と幾何級数展開は、本質的に同じもの?違うもの?

「高校でも教わる無限級数展開」として、幾何級数展開があります。「等比数列の和」という名前のほうが、多くの方にとって、もしかするとなじみがあるかもしれません。
例えば次の無限級数は、幾何級数の方法で出す事ができます。

$$|x| < 1 の時、\frac{1}{1-x}=1+x+x^2+x^3+x^4+\cdots$$ $$※導出:S_n=1+x+x^2+x^3+\cdots+x^n として S_n-xS_n=1-x^{n+1} となるので$$ $$|x|<1 の時、S_n(1-x)=1-x^{n+1}\Leftrightarrow S_n=\frac{1-x^{n+1}}{1-x}\rightarrow \frac{1}{1-x}\hspace{5pt}(n\rightarrow \infty)$$

このとき、じつは\(\frac{1}{1-x}\)をテイラー展開・Mcl.展開する事もできます。この時、結論を言いますと、幾何級数で表された無限級数は、Mcl.展開に一致するのです。
2つ以上の方法で整級数の形に表わせたとき(例えば幾何級数の方法とテイラー展開)であろうと、両者は本質的に同じである・・という事の具体例になります。

整級数の形に無限級数展開を行う時、何かしら「計算しやすい方法」で1つの形を導出してけば、それは本質的に1通りの正しい整級数の表式という事が、じつは保証される、という数学的事実があります。
テイラー展開等が特別扱いというわけではなく、\(\frac{1}{1-x}\)の場合であれば幾何級数によって考えるほうが簡単なので、そちらの考え方でもよいというわけなのです。

マクローリン展開の一覧表

物理等では重要なので、主要な初等関数の Mcl. 展開をいくつか表にまとめてあります。x = 0 での f(0) と、微分係数 f ‘ (0), f ‘ ‘ (0),・・を具体的に計算し、 Mcl. 展開の式に代入すれば公式が得られます。
表にある「収束半径」とは、無限級数が有限の値に収束する「変数 x の範囲」の事で、ここでのより具体的な意味としては剰余項が収束するかという事です。これについては、初等関数の中でも、あまり気にしなくてよいものと、気にしたほうがよいものがあります。

対象の関数Mcl.展開収束半径計算方法
e の指数関数\(e^x=1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\cdots\) 実数全域 \((e^x)^{\prime}=\frac{d^n}{dx^n}e^x=e^x\)
f(0) = f'(0) = f”(0) = 1
自然対数関数
ln(1+x)
\({\small\ln (1+x)}\)
\(=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots\)
※ln x だと、x = 0 で定義できず、微分不可能・Mcl.展開不可能
|x| < 1\({\small(\ln(1+x))^{\prime}}=\frac{1}{1+x}\)
\({\small(\ln(1+x))^{\prime\prime}}=\frac{-1}{(1+x)^2}\)
f(0)=0, f'(0)=1, f”(0)=-1
三角関数
(正弦)
\(\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots\)実数全域 \({\small(\sin x)^{\prime}=\cos x }\)
\({\small(\sin x)^{\prime\prime}=-\sin x}\)
f(0)=0, f'(0)=1, f”(0)=0, f”(0)=-1
三角関数
(余弦)
\(\cos x=1-\frac{x^2}{2}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots\)実数全域 \({\small(\cos x)^{\prime}=-\sin x}\)
\({\small(\cos x)^{\prime\prime}=-\cos x}\)
f(0)=1, f'(0)=0, f”(0)=-1, f”(0)=0
\(\frac{1}{1-x}\)
幾何級数
\(\frac{1}{1-x}\)
\(=1+x+x^2+x^3+x^4+\cdots\)
|x|<1 \(\left(\frac{1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^2}\)
\(\left(\frac{1}{1-x}\right)^{\prime\prime}=\frac{2}{(1-x)^2}\)
※(-1)と(-1)がかけられ、
必ず+になります。
f(0)=1, f'(0)=1, f”(0)=1, f”(0)=1
\((1+x)^a\)
一般2項級数
\((1+x)^a=1+ax\)
\( +\frac{a(a-1)}{2}x^2+\frac{a(a-1)(a-2)}{3!}x^3+\cdots\)
|x|<1 \({\small((1+x)^a)^{\prime}=a(1+x)^{a-1}}\)
\({\small((1+x)^a)^{\prime\prime}=a(a-1)(1+x)^{a-2}}\)
f(0)=1, f'(0)=a, f”(0)=a(a-1)
f”'(0)=a(a-1)(a-2)

テイラー展開の式は、どのように導出する??

証明の方法はいくつかありますが、ここでは積分の公式である「部分積分」を使う方法を、述べます。(積分区間に変数を含んだ形の計算になるので注意してください。

ここで具体的に述べますのは、「剰余項」を含んだ「テイラー公式」の証明です。
そして個々の関数について、剰余項が n→∞ でゼロになる事を示して個々の関数についてのテイラー展開と Mcl. 展開が証明されるという流れです。剰余項の収束問題については後述します。

証明(テイラー公式)

まず、
\(f(x)-f(a)=\int_a^x f^{\prime}(t)dt \Leftrightarrow f(x)=f(a) + \int_a^x f^{\prime}(t)dt\)
【※これは「微積分学の基本定理」を用いています。唐突に t という別の変数が出てきてどういう事かと思われる方もいるかもしれませんが、これはあくまで積分での表記方法の約束です。】
次に、
\(f(x)=f(a) + \int_a^xf^{\prime}(t)dt\)
\( =f(a)-\int_a^x(x-t)^{\prime}f^{\prime}(t)dt \hspace{10pt}【∵\frac{d}{dt}(x-t)=-1】 \)
\( =f(a)-\left[(x-t)f^{\prime}(t)\right]_a^x +\int_a^x(x-t)f^{\prime}(t)dt \)

\( =f(a)+(x-a)f^{\prime}(a)-\int_a^x\left(\frac{d}{dt}\frac{(x-t)^2}{2}\right)f^{\prime}(t)dt \hspace{10pt}【∵\frac{d}{dt}(x-t)^2=-2(x-t)】 \)
\( =f(a)+(x-a)f^{\prime}(a)-\left[\frac{(x-t)^2}{2}f^{\prime}(t)\right]_a^x+\int_a^x\frac{(x-t)^2}{2}f^{\prime\prime}(t)dt \)
\( =f(a)+(x-a)f^{\prime}(a)+\frac{(x-a)^2}{2}f^{\prime}(a)-\int_a^x\left(\frac{d}{dt}\frac{(x-t)^3}{3!}\right)f^{\prime\prime}(t)dt \)
\( =f(a)+(x-a)f^{\prime}(a)+\frac{(x-a)^2}{2}f^{\prime}(a)-\left[\frac{(x-t)^3}{3!}f^{\prime\prime}(a)\right]+\int_a^x\left(\frac{d}{dt}\frac{(x-t)^3}{3!}\right)f^{\prime\prime\prime}(t)dt \)
\( =f(a)+(x-a)f^{\prime}(a)+\frac{(x-a)^2}{2}f^{\prime}(a)+\frac{(x-a)^3}{3!}f^{\prime\prime}(a)+\int_a^x\frac{(x-t)^3}{3!}f^{\prime\prime\prime\prime}(t)dt\)
\(=\cdots\)
この操作を繰り返す事により、\(\int_a^x\frac{(x-t)^{n-1}}{(n-1)!}f^{(n)}(t)dt\)の形の剰余項(「積分型の剰余項」)を含んだ形の「テイラー公式」が成立します。【証明終り】

この剰余項は、主要な初等関数の場合は0に収束するのでテイラー展開が成立します。ただし、剰余項が収束する「x の範囲」が限定される場合もあるので、そこは注意が必要です。
e の指数関数や、三角関数については定義域の全域で剰余項は0に収束するので、定義域全域で「テイラー展開可能」です。

この他に、計算は結構面倒なのですが、逆三角関数の Mcl.展開はじつは数学的には特徴的な形になって、円周率を表す式の導出に使えたります。ただしこれは、物理等への応用ではあまり重要ではないです。

剰余項の収束問題

上記のような部分積分による方法でも他の方法でも、テイラー展開を導出すると最後のnを含んだオマケの項である「剰余項」がくっついてきます。

結論を言うと指数関数や三角関数などの初等関数においては剰余項はn→∞で0に収束するので、無限級数の形で問題なくテイラー展開・ Mcl.展開を、使う事ができます。ここでは、その事の証明を記しておきます。結構面倒な部分も含まれるので、参考までに見てください。

\(e^x,\sin x,\cos x\) の剰余項の収束問題 ■ 関数 \((1+x)^{\alpha}\) の剰余項の収束問題

\(e^x,\sin x,\cos x\) の剰余項の収束問題

上記で、理論的にはまずテイラー公式というものがあって、n→∞で剰余項が0に収束するものが「テイラー展開可能」という事でした。

e の指数関数や三角関数については、剰余項が収束する事を証明してみましょう。

証明のポイント

ポイントは、「nに関する極限」を考える事です。つまり、変数xについては極限操作としてはいじらないという事です。
極端な話、例えばx=0、x=100といった具体的な値を代入してみて、その時に剰余項がnに関してn→∞で0に収束すれば、「x=0、x=100でテイラー展開可能」という事です。
積分型の剰余項では積分区間にxが入ってますが、nに注目した場合は特定の積分区間での定積分のように考える事ができるのがポイントなのです。

前半でも触れましたように e の指数関数や三角関数はn階導関数を容易に表せます。これによってまず、剰余項のn階微分のところが具体的になります。
まず最初は、e の指数関数です。

$$e^x のテイラー公式の積分型の剰余項は:R_n(x)=\int_a^x\frac{x^{n-1}}{(n-1)!}e^tdt$$

$$注目すべきところはnに関する部分、つまり \frac{x^{n-1}}{(n-1)!}です。$$

具体的な関数の部分については各々の変数について「nに関しては定数」という扱いになり、積分も各々のxに対して有限の区間内の定積分とみなせますから、積分の中身がn→∞で0に収束すれば定積分も0に収束するのです。

$$よって、\lim_{n\to \infty}\frac{x^n}{n!}=0を示せばよく、 $$

$$それによりe^x は全実数の範囲でテイラー展開可能である事が示されます。 $$

nをじゅうぶん大きくすればおそらく0に収束する「だろう」事が予想されますが、具体的にそれを示しましょう。まずxが正の範囲の時に示します。xよりも大きいてきとうな自然数 Mを考えます。n=2Mを考えると、分母には、M+1、M+2、・・M+Mという、M個のMより大きい数が因数として含まれています。

他方、分子にあるのはMよりも小さいxという正の実数のM乗です。この時点でまず分子よりも分母が確実に大きい事が分かりますが、このn= 2Mよりもさらにnを大きくすると、nが1増えるごとに分子はxが1つ乗じられ、分母は2M+1、2M+2、・・などの数が乗じられます。つまり、nを大きくすれば、どのような小さい正の実数よりも \(\frac{x^n}{n!}\) を小さくできます。

$$x>0の時、任意の正の実数\epsilon に対し\frac{x^n}{n!}< \epsilon つまり \lim_{n\to \infty}\frac{x^n}{n!} =0 です。$$

xが負の場合も、絶対値は変わりませんから符号が入れ替わりながら0に収束します。x=0の場合は\(\frac{0^{n-1}}{(n-1)!}=0\) ですから、この場合も組み込む事ができます。

$$ よって、任意の実数xに対して\lim_{n\to \infty}\frac{x^n}{n!}=0であり、 \lim_{n\to \infty} R_n(x) =0【証明終り】 $$

三角関数の場合は、n階微分も三角関数の形ですから、絶対値は1よりも小さい事を用いて不等式を作ります。そして指数関数の時と同様の極限を考える事で剰余項がn→∞で0に収束する事になるのです。

関数 \((1+x)^{\alpha}\) の剰余項の収束問題

じつは剰余項の収束問題に関しては、e の指数関数や三角関数よりも\((1+x)^{\alpha}\)といった一見簡単な関数のほうが、証明が面倒です。
おそらく、このページの内容の中では問題としてはここが一番難しいです。
上手に不等式を使って値の大きさを評価しないと、なかなかうまくいきません。
ここでは、次の事を示します:

$$任意の実数\alpha に対して(1+x)^{\alpha} は、|x|<1ならば Mcl. 展開可能$$

「|x|<1 の範囲で、x=0のまわりでテイラー展開可能」と言っても同じです。
以下、x=0のまわりでのテイラー公式について考えます。Mcl.展開の形で「無限級数ではなく剰余項が残ったままの状態」と考えてもよいと思います。

$$ f(x)=(1+x)^{\alpha} の積分型の剰余項:R_n(x)=\int_0^x\frac{(x-t)^{n-1}}{(n-1)!}f^{(n)}(t)dt$$

$$f(x)=(1+x)^{\alpha}とすると、 f^{(n)}(t)=\alpha (\alpha -1)(\alpha -2)\cdots(\alpha -n+1) (1+t)^{\alpha -n} $$

積分変数(ここではt)に対する定数となる部分は、積分記号の前に持っていきましょう。

$$ R_n(x)= \frac{ \alpha (\alpha -1)(\alpha -2)\cdots(\alpha -n+1) }{ (n-1)! } \int_a^x (x-t)^{n-1} (1+t)^{\alpha -n} dt $$

不等式をうまく使うために、2つほど、それほど難しくない関係式を示します。まず、1つ目です。

補題①

$$|x|<1 かつ 0<t<xまたは0>t>xならば\left|\frac{x-t}{1+t}\right|<|x|$$ ちょっと分かりにくいかと思いますが、xとtの正負の符号が一致して、尚かつ絶対値に関して|x|>|t| という関係のもとで成立する式です。これは、積分に関してうまく不等式を作るための式です。

★ 証明: $$0<t<xの時、\left|\frac{x-t}{1+t}\right|=\frac{x-t}{1+t}<\frac{x}{1+t}<x=|x|$$ $$0>t>xの時、\left|\frac{x-t}{1+t}\right|=\frac{-x+t}{1+t}<\frac{-x-xt}{1+t}=\frac{-x(1+t)}{1+t}=-x=|x|【証明終り】$$ 2番目のほうについては、x >-1 に―t(>0)を乗じた ―xt>tの関係を使っています。

これによって剰余項を次のように変形したうえで不等式で評価できます。

$$ R_n(x)= \frac{ \alpha (\alpha -1)(\alpha -2)\cdots(\alpha -n+1) }{ (n-1)! } \int_a^x (x-t)^{n-1} (1+t)^{\alpha -n} dt$$

$$= \frac{ \alpha (\alpha -1)(\alpha -2) \cdots (\alpha -n+1) }{ (n-1)! } \hspace{5pt}\int_a^x \left(\frac{x-t}{1+t}\right)^{n-1} (1+t)^{\alpha -1} dt $$

これに絶対値をつけます。不等式を作りやすくなるためです。
次の式の2段目から3段目への不等式を作るために上記の補題の結果を用いています。

$$ |R_n(x) |= \left | \frac{ \alpha (\alpha -1)(\alpha -2) \cdots (\alpha -n+1)}{ (n-1)! } \hspace{5pt} \int_a^x \left(\frac{x-t}{1+t}\right)^{n-1} (1+t)^{\alpha -1} dt\right|$$

$$< \frac{ | \alpha (\alpha -1)(\alpha -2)\cdots(\alpha -n+1) |}{ (n-1)! } \int_a^x \left| \frac{x-t}{1+t}\right|^{n-1} |1+t|^{\alpha -1}dt $$

$$< \frac{| \alpha (\alpha -1)(\alpha -2) \cdots (\alpha -n+1)|}{ (n-1)! } \hspace{5pt} \int_a^x |x|^{n-1} |1+t|^{\alpha -1}dt $$

$$=\frac{| \alpha (\alpha -1)(\alpha -2) \cdots (\alpha -n+1)|}{ (n-1)! } |x|^{n-1} \hspace{5pt} \int_a^x |1+t|^{\alpha -1}dt $$

この最後の式には積分の中身にはnが入っていませんから、nに関しては定数であると考えて(もちろん各々のxに対しては別々の値になります)、てきとうにCとおけます。絶対値を外せば積分の計算も直接できてしまいますが、ここでは「nに関して定数」である事が分かればじゅうぶんなのです。まとめると次のようになります。

$$|R_n(x)|< \frac{ |\alpha (\alpha -1)(\alpha -2)\cdots (\alpha -n+1) |}{ (n-1)! } |x|^{n-1} C$$

この不等式の右辺側をもう少し変形します。

$$\frac{ |\alpha (\alpha -1)(\alpha -2) \cdots (\alpha -n+1) |}{ (n-1)! } |x|^{n-1} C$$

$$=\frac{| \alpha (\alpha -1)(\alpha -2) \cdots (\alpha -n+1) |}{ 1・2・3・4 \cdots (n-2)(n-1)} |x|^{n-1} C$$

$$< \frac{| \alpha (\alpha +1)(\alpha +2) \cdots (\alpha +n-1) |}{ 1・2・3・4 \cdots (n-2)(n-1)} |x|^{n-1} C $$

$$=|\alpha|\left(1+\frac{| \alpha |}{1} \right ) \left (1+\frac{| \alpha |}{2} \right ) \left (1+\frac{| \alpha |}{3} \right ) \cdots \left (1+\frac{| \alpha |}{n-1} \right ) |x|^{n-1} C $$

ここで、先に進むにはもう1つ補題が必要です。

補題②

$$任意の実数\alpha に対して、0<r<1 ならば1+\frac{|\alpha|}{N}<\frac{1}{r} となる自然数Nが存在する$$ これは何の事かと言うと、要するに1と1よりも大きい数の間には1+εという別の数が必ずあり、大きい自然数Nで割る事でそのような小さい数εを作れる事を、式で表しただけです。

★ 証明: $$1<\frac{1}{r} であり、1<1+\epsilon <\frac{1}{r}を満たす正の実数\epsilon が必ず存在する。$$ $$任意の実数\alpha に対して0<\frac{|\alpha|}{N}<\epsilon となる(十分大きい)自然数Nは存在できる。$$ $$よって、 1+\frac{|\alpha|}{N}<1+\epsilon <\frac{1}{r}となる自然数Nが存在する。【証明終り】$$

これによって、さらに別の不等式で評価ができます。0<|x|<r<1を満たすてきとうな実数 r を想定します。

$$1+\frac{|\alpha|}{N}<\frac{1}{r} となる自然数Nが存在し、n≧N ならば 1+\frac{|\alpha|}{n}<\frac{1}{r}でもある。$$

$$n≧N の時、R_n(x)<|\alpha|\left(1+\frac{| \alpha |}{1} \right ) \left (1+\frac{| \alpha |}{2} \right ) \left (1+\frac{| \alpha |}{3} \right ) \cdots \left (1+\frac{| \alpha |}{N} \right ) \cdots \left (1+\frac{| \alpha |}{n-1} \right ) |x|^{n-1} C$$

$$< |\alpha|\left(1+\frac{| \alpha |}{1} \right) \left (1+\frac{| \alpha |}{2} \right ) \left(1+\frac{| \alpha |}{3} \right) \cdots \left(1+\frac{| \alpha |}{N-1} \right) |x| ^{N-1} \left(\frac{ |x| }{r}\right)^{n-N-1} C $$

この不等式評価は、ある自然数Nについて、N-1までの項はそのままにして、N以降の項は1/rよりも小さいとしているのです。

ここで、N-1までの項の積は、nに関して定数である事に注意します。

$$つまり、 |\alpha|\left(1+\frac{| \alpha |}{1} \right ) \left ( 1+\frac{| \alpha |}{2} \right ) \left (1+\frac{| \alpha |}{3} \right ) \cdots \left (1+\frac{| \alpha|}{N-1} \right ) |x| ^{N-1} =K(nに関して定数)とおけます。$$

$$よって、|R_n(x)|<KC \left(\frac{ |x| }{r}\right)^{n-N-1}で、 \frac{ |x| }{r}<1 ですから、$$

$$\lim_{n\to \infty} \left(\frac{ |x| }{r}\right)^{n-N-1} =0, 従って \lim_{n\to \infty} |R_n(x)| =0 $$

よって、n→∞で剰余項が0に収束するので |x|<1の時 、x=0においてテイラー展開可能(つまり Mcl. 展開可能)です。【証明終り】

\((1+x)^{\alpha}\) の剰余項が|x|≧1の範囲では収束しない事

★尚、x≧1の時は剰余項が収束しない事については、少し遠回りですが、次のように考えます。
|x|<1 の時にマクローリン展開が可能であるわけですが、このように整級数の形で無限級数展開できた場合、じつは収束半径を計算する公式を使う事ができるのです。 $$公式:\sum_{n=0}^{\infty}a_nx^nの収束半径を\rho とすると、\frac{1}{\rho}=\lim_{n\to \infty}\left|\frac{a_n}{a_{n-1}}\right|$$ 【ただし、公式を適用できる条件があり、この極限が収束するか+∞に発散する場合に限ります。】
その公式を使うと、収束半径は1であるという結果が出ます。 整級数は収束半径未満のxの範囲で収束します。従って、x≧1の範囲でMcl.展開できたとすると、その形の収束半径が1である事に矛盾してしまうので|x|≧1でn→∞において剰余項が0に収束する事はあり得ない、というわけです。
注意すべきは、であるからといって|x|<1で剰余項が0に収束する事が直ちに示されるか?というとそうではないという事です。 |x|<1で関数をMcl.展開の形の整級数で表せるかどうかは、面倒ですが例えば上記のような方法でその範囲で確かに剰余項が0に収束する事を証明する必要があるのです。

このように\((1+x)^{\alpha}\)の形の多項式に関するMcl.展開可能性の理論は、厳密に見ると意外に細かくて面倒ですが、これによって一般2項定理が成立する事が確かに分かります。
また、物理等でも平方根や分数の形を無限級数の形にして(多くの場合3次以降等の高次項は0とみなして)理論を分析する事がよくありますが、そこで使われるのがMcl.展開です。平方根は「1/2乗」、分数は「-1乗」でもあるので、そのような事ができるのです。

解析学での極限値の定義

今回は、極限について、より数学的に考えた場合にはどのような定義になるのかといった事を紹介します。じつはこのページで語られる内容が、大学の学部での一般的な解析学・微積分学で最初に教えられるものです。そのため、今回の内容は数学科で教わるような「解析学の初歩」をかなり分かりやすく説明した内容にもなっています。その内容を見てみましょう。

解析学的な極限の厳密な定義は?

数列の極限の定義とε-N論法  ■ 実数の性質 有理数にない性質は? ■ 有界性と上界 下界 上限 下限 

数列の極限の定義とε-N論法

解析学での極限の理論は、数列の極限が初歩的で基本的内容となるので、まずそれを述べましょう。
\(\frac{1}{n},\frac{1}{n^2}\)といった数列は、限りなく0に近づきます。
この事について、極限値である0を基準にして考えた時、0を含む任意の区間(普通、開区間を考えます)内にある番号以降の数列がおさまる事を意味するのです。

「任意の区間」とは、「任意の『小さな』区間」を想定しています。
例えば、( -0.001 , 0.001 ) のような開区間です。数列1/nであれば、n=1001以上であれば、全てこの小さな区間内に入るわけです。
数列の、ある番号以上の「全ての」要素を考える理由は、「振動」の可能性を除くためです。振動してしまう場合は、収束では無く発散の部類に区分します。

この時、別の ( -0.0001 , 0.0001 ) のような、さらに小さい開区間を考えると、n=10001 以上でなければ要件を満たしません。そのため、数学的には次のように考えます。

  • まず、値cを含む開区間 U を考え、ある番号以上では全てそこに含まれるとする
  • どんな小さな開区間 U を考えても、対応する番号 N が存在するとする(これを、「任意の開区間Uに対し、ある自然数Nが存在する」などと表現します)
  • そのような条件を満たす時、数列はn→∞で「極限値cを持つ」と呼ぶ事にする(定義する)
数学的な極限値の定義≪数列≫①

$$\lim_{n\to \infty}A_n=c $$ $$\Leftrightarrow c を含む任意の開区間 U に対してn ≧ N_0 ならば A_n\in U となる自然数 N_0 が存在する$$

★ この小さな開区間の事を、「近傍」(英:neighborhood)とも言います。

極限の定義
「どんなに小さい」という表現を、「任意の」という言葉で数学では表現します。極限の定義としては「小さい」という事が意味としては重要ですが、大きい区間であっても当てはまる事から、「小さい」という言葉を添えるのは補助的な説明のためです。「任意」と言う時点で、大きいものも小さいものも全て含まれます。
参考

日本語の場合、「どんな実数でも」という事を「任意の実数に対して」という、少々難しい言い回しで表現する習慣があります。これに対して、じつは英語の場合では、日常で使う言葉をそのまま使う習慣があります。
「任意の実数 R に対して」を英語で言うと、for all real numbers R となります。
every や each を使っても表現されます。for each real number R 等。意味するものは大体同じです。

多くの微積分学・解析学の教科書では、同じ内容を不等式で書く事も多いです。その場合、「任意の正の(小さい)実数」をギリシャ文字の「イプシロン」ε で表すのが通例です。

数学的な極限値の定義≪数列≫②

$$\lim_{n\to \infty}A_n=c $$ $$\Leftrightarrow 任意の正の実数\epsilon に対してn ≧ N_0 ならば |A_n – c| < \epsilon となる自然数 N_0 が存在する$$

★ これは、極限値と数列の差が「限りなく小さくなる」=「どんな小さい正の実数cよりも小さくできる」・・と、捉えているわけです。
この方法による定義を、慣習的に 「イプシロン・エヌ論法」と呼んだり、後述しますように関数の場合には別の正の実数デルタ δ を考える事から「イプシロン・デルタ論法」と呼んだりします。

これらの定義は、分かりにくい事で悪名高いものでもあります。(意味としては難しくないのですが。)
実際、物理などで関数等の極限を考える時は、これらの定義はあまり重要でない事も多いです。
例えば、1/n や 1/x などの数列や関数は、直感的に捉えても上記の定義を使っても結局「極限値は0」という結果は同じなのです。そのため、同じ結果を得るのであればよりシンプルな考え方をすべきだ・・とも、言えるわけです。

数学的に厳密に考える利点があるのは、収束するのか発散するのかすごく微妙で、直感的には判定しがたいという場合です。そのような場合は、物理や工学などでの応用よりも、純粋数学的な議論において多いと思われます。

実数の性質 有理数にない性質は?

次に、極限に関する基礎的な理論を下支えするものとして、実数が持つ性質が重要です。実数とは有理数に無理数を合わせたものですが、無理数とは「実数のうち有理数でないもの」・・などと説明されますから、これでは実数とは何なのか?という事の説明としては不足するものがあります。

結論を言うと、次の有理数の性質は、実数も共有するものです。

有理数が持つ性質
  • +-÷× の四則演算などが定義できる(より正確には「体」(field) であるという事)
  • 「順序構造」がある・・異なる2つの要素を選んだ時、p < q または p > q が必ず成立する。

★ これは、実数も備えている性質であるわけです。実数とは全ての有理数を含んだ集合ですから、有理数が持つ性質は実数も全て備えていなければならない、とも言えます。

では実数にしかない性質は何だろう?と考えると、次の「切断」(Schnitt これはドイツ語由来です)と呼ばれる、部分集合の分け方において成立する事が、じつは有理数と異なるのです。
「切断」とは、ごく簡単に言うと1箇所だけ境を決めて、1つの集合を2つの部分集合に分けるという操作です。例えば実数全体を「0以上」と「0未満」に分ける事は「切断」に該当します。(必ずしもその集合に属する「1点」で分けない場合も含みます。)

「切断」の定義

順序構造を持つ集合Mと、M のある要素 c について、次の条件を満たす部分集合AとBに分割する事を「Mのcにおける『切断』」と呼ぶ: $$①A\cup B=M\hspace{10pt}②A\cap B=\phi\hspace{10pt}③任意のa\in A,b\in Bに対してa<b $$

部分集合AとBの役割は入れ替えても同じです。
要するに、このような2つの部分集合を考えるという事を意味しています。

実数の「切断」に関する性質:(「完備性」)

\(\mathbb{R}\)のcにおける切断によってできる部分集合AとBにおいては次の事が必ず成立する: $$「Aの最大値」と「Bの最小値」のどちらかだけが存在し$$ $$「Aの最大値 と B の最小値も両方存在しない」という事は起こらない$$

★ 尚、どんな集合の切断でも「A の最大値と B の最小値も両方する」という事は起こりません。
これを仮定すると、矛盾が生じるためです。

有理数の場合、じつは有理数全体における「切断」を考えた時には、切断で作った部分集合AとBについて「A の最大値 と B の最小値も両方しない」という事が起こります。

これを見るには、例えば \(q^2<2\) と \(q^2>2\) を満たす2つの部分集合に有理数を分けます。これはじつはきちんと「切断」に該当するのです。ところが \(q^2=2\) を満たす有理数は存在しませんから、これらの部分集合に最大値も最小値も存在しないという事です。
それに対して、これが実数の切断であれば \(r^2=2\) を満たす \(r=\sqrt{2}\) が存在しますからどちらかの部分集合に最大値か最小値が存在できるわけです。

有界性と上界、下界、上限、下限

さて、次に実数の中の部分集合(具体的には数列や関数)に対する、極限に関連する用語で重要なものを見ていきます。
これらも、意味としては簡単です。
ただし、記号などでごちゃごちゃ書かれると分かりにくいですから、意味を理解する事が重要です。

定義:「有界」である事

実数の部分集合Aとその要素 a について、 Aが「上に有界である」事と「下に有界である」事を次のように定義します。

  • 上に有界である:
    \(任意のa\in A について a < c となる実数 c が存在する\)
  • 下に有界である:
    \(任意のa\in A について a > c となる実数 c が存在する\)

「上」「下」「有界」という語が入っていれば、多少の文章での使い方は変えてもよい習慣になっています。例えば「上に有界なので・・」のように使えます。
意味としては全く難しくなくて、例えば数列1/nは必ず0より大きいので「下に有界」です。また、nが自然数であれば最大値は1ですから「上にも有界」です。これが関数1/xでxが正の実数であれば、「下には有界」であるけれどx→0で無限大に発散するので「上には有界でない」事になります。

次に、上界と下界です。これらはそれぞれ、上に有界である集合、下に有界である集合について考えられます。要するに、数列や関数よりも「必ず大きくなる集合」と「必ず小さくなる」集合です。

定義:上界と下界

実数の部分集合が上または下に有界である時、
集合「上界」と「下界」を次のように定義します。

  • 上界:\(U={c|任意のa\in A について a ≦ c}\)
  • 下界:\(V={c|任意のa\in A について a ≧ c}\)

【{x|・・・}は、「・・・を満たすxから成る集合」の意味】
上界は「じょうかい」、下界は「かかい」と読みます。UとかVの記号は、何でも構いません。
数列1/nは0より大きい事によって下に有界であると言えるわけですが、-1よりも必ず大きいので下に有界であると言ってもよいのです。
そのような、必ず1/nより小さくなる実数の集合が1/nの下界であり、「0以下の全ての実数」という集合を指すわけです。

定義の説明としては最後に、上限と下限を見てみましょう。これらも意味としては簡単で、それぞれ「上界の最小値」「下界の最大値」という意味で使います。

定義:上限と下限

有界である実数の部分集合 A の上界 U と下界 V に対して、
上限(supremum)下限(infimum)を次のように定義します。

  • 上限:\(\sup A=\mathrm{min} U\)(Aの上界 U の最小値)
  • 下限:\(\inf A=\mathrm{Max} V\)(Aの上界 V の最小値)

上界または下界の要素は無限個ありますが、特にそれぞれの最小値と最大値に注目するわけです。対象となる集合が数列であれば、$$\sup A_n,\inf A_n といった表記もなされます。$$

さてここで、上界が存在するなら上限は必ず存在し、下界が存在するなら下限は必ず存在するという事実があります。特に名前はついていない定理ですが、重要なので述べておきましょう。

定理:上限と下限の存在

有界である実数の部分集合 A に対して、 上界 U と下界 V に対して、

  • A の上界Uが存在するならばAの上限:\(\sup A=\mathrm{min} U\)も存在する。
  • A の下界Vが存在するならばAの下限:\(\sup A=\mathrm{Max} V\)も存在する。

上界または下界の要素は無限個ありますが、特にそれぞれの最小値と最大値に注目するわけです。

上界と上限
下界と下限の関係なども同様です。
円周率や、自然対数の底 e はこの理屈によって、上限として「存在する」事が証明されます。
他方で、円周率が3.141・・である事や e = 2.718・・である事は、直接的に数列の値を計算したり、無限級数展開を利用したりして示す必要があります。

これは自明な事ではないので証明が一応必要です。実数の完備性を用いる事で確かに成立する事を示せます。参考までに、記しておきます。

証明:上界には最小値が存在し、下界には最大値が存在する

Aの上界Uと、実数のうちAの上界でない集合\(\bar{U}\)は実数全体の「切断」になっている事に注目します。
実数全体に対する切断なので、Uと\(\bar{U}\)のどちらか片方「だけ」に必ず最小値あるいは最大値が存在します。
しかし、上界の定義から、\(\bar{U}\) の任意の要素 c に対して、必ず c < a となるAの要素 a が存在します。【上界の定義の否定を考えるわけです。】
となると、そのような c と a の間には必ず別の実数が存在し、(例えば\(\frac{c+a}{2}\))、その実数は\(\bar{U}\) の要素です。これは、\(\bar{U}\) の任意の要素 \(c_1\) に対して、\(c_1<c_2\)となる別の要素 \(c_2\) が存在するという事なので、\(\bar{U}\) には最大値は存在しません。
よって、もうひとつのほうの「Uに最小値が存在する」事が真という事になるので、上界には必ず最小値・すなわち上限が存在します。【証明終り】
下界に対して下限が存在する事の証明も、全く同じ論法によります。

解析学の基本的な定理:有界な単調数列は収束列である

数列や関数が特定の極限において収束するのか発散するのかを調べて理論を形成する事が、解析学では行われます。その1つとして、「有界である単調数列は収束列である」という事実(「定理」)は重要ですので見ておきましょう。単調数列とは単調増加あるいは単調減少数列という事です。収束列とは、単純に「収束する数列」という意味です。この時、もちろん上に有界である数列が収束する条件(の1つ)は単調増加である事、という意味です。

円周率や自然対数の底といった重要な定数が極限値として存在する事の根拠は、この定理です。

証明の流れと概要 
定理の証明:上限あるいは下限が極限値となる事を示す 
具体的な「有界な単調数列」にはどんなものがある? 

証明の流れと概要

まず、証明の流れを見ておきましょう。有界には上に有界と下に有界である場合(あるいは両方)がありますから、それぞれの場合に分けます。

  • 上に有界である単調増加数列
  • 下に有界である単調減少数列

証明の方法は全く同じなので、片方だけ示せばもう片方も全く同じように証明できます。ここでは、上に有界な単調増加数列の場合を考えます。

  1. 数列が上に有界であるから、上限(最小の上界)が存在する事実を確認
  2. 上限を含む任意の(小さな)開区間\(U_{\epsilon}\)を考える
  3. 少なくとも1つ、数列の要素がその開区間内に含まれる事を示す
  4. 単調増加関数である条件を適用すると、数列の上限が極限値の定義を満たす事が分かるので、これが極限値であると判定。→ 証明完了

要するに、上に有界である場合は「上限」が必ず存在するわけですが、その上限が数列の極限値に(必ず)なる、という事です。その詳しい証明を次に見ましょう。これはそれほど難しい証明ではなく、事実関係や極限の定義を丁寧に整理すれば「確かにそうである」事が言えるというものです。

★ 尚、数列とは、厳密にはそれ自体は集合よりもむしろ関数として考えるべきもので、集合として考える時は「そのような関数の値からなる集合」を考える必要が本来はあります。そのような厳密な区分が重要である場合もあります。
しかし、それは表記として少々煩雑でもあるので、数列{\(A_n\)} における具体的な \(A_1, A_2 \) などをここでは「数列の要素」と記す事にします。

定理の証明:上限あるいは下限が極限値となる事を示す

まず、単調増加数列が上に有界である時、それがどんな数列であろうともn→∞で収束する事を証明しましょう。上に有界という条件ですから、まず無限大に発散はしない事は明らかですが、明確に「極限値」が存在するかどうかが曖昧なので明確にしようというわけです。

前述のように、上に有界であれば上限すなわち「上界の最小値」が必ず存在します。結論は、この上限が数列の極限値という事になります。

$$\sup A_n=c とおくと任意の自然数nに対してA_n<c$$

ここで、このページの最初のほうでも述べた、極限値の定義を考えましょう。この場合は、不等式も使ったほうが簡単です。任意の小さい正の実数εを考え、区間 \(U_\epsilon =( c -\epsilon ,\hspace{5pt}c ] \)を考えます。
【※c -ε 側は開区間、c側は閉区間という事です。(c -ε ,c + ε) を考えても別に構いません。ここでの場合は単純に、cより大きい範囲は考える必要はないというだけです。】

この時、区間 \(U_\epsilon =( c -\epsilon ,c ] \) 内に数列の要素が含まれないという事はあり得ないのです。なぜなら、もしそのような事が起こるなら任意の自然数nに対して \(A_n ≦ c -\epsilon\) という事になり\(c -\epsilon\)も上界の1つという事になりますが、cが「最小の」上界なのですからそれはあり得ない、という事です。
【ここの部分に関しては、そのように仮定すると矛盾するから、という背理法の論法でも同じです。】

すると、少なくともある1つのn=Nについて、 \(A_N\in U_\epsilon( c -\epsilon ,c ] \) という事は言えるわけです。
ここで、\(A_n\) は単調増加数列という条件であれば、
任意のn≧Nを満たす自然数について、 \(A_n\in U_\epsilon( c -\epsilon ,c ] \) という事になります。
【c は上界の1つですから、nをどれだけ大きくしてもcを超える事はありません。】

さて、これで一体何が言えたのかと言うと、
「cは\(A_n\) 極限値の定義の条件としてぴったり当てはまる」事が言えたのです。
つまり \(A_n\) はn→∞で極限値cを持つ事が証明された、という事になるのです。
【証明終り】

このように、定義や事実関係を丁寧に当てはめていく事でこの定理は証明されます。下に有界である単調減少数列も、全く同様に下限を極限値として持つ事を証明できます。

具体的な「有界な単調数列」にはどんなものがある?

では、有界な単調数列とは具体的にはどんなものがあるでしょう。抽象的には表せるけれども具体例が全く見つからない・・というのでは、純粋数学的にもあまり有意義とは言えません。具体的には、1/nなどのごく簡単な数列は下に有界で単調減少である数列の1つです。この他にも、有界な単調数列というのは少し考えれば具体的にたくさん見つかるのです。

問題はむしろ、特定の数列が「有界な単調数列」かどうかの判定が分かりにくい場合でしょう。

$$例えば、\left(1+\frac{1}{n}\right)^n \hspace{5pt}や \hspace{5pt} \sum_{j=1}^n\frac{1}{n}-\ln n \hspace{5pt} などの数列です。$$

これらは、見た目では有界なのかも単調数列なのかも、ちょっと分かりにくいですね。結論を言うとこれらはどちらも有界な単調数列であり、それぞれ極限値を持ち e(自然対数の底、ネピア定数), γ(ガンマ、オイラー定数) で表される事が普通です。

円周率も、特定の数列の極限値です。この場合、円に内接および外接する正n角形の周の長さを数列として表した時に有界な単調数列になります。半径が1の円の円周の長さが円周率の2倍になります。【極限値が存在する事が分かれば定数倍に関しては調整できるので、円周率に関してはそのように定義しておくという事です。】

実関数の場合の極限と連続の定義

最後に、変数が実数である一般の関数(実関数)の場合の極限の定義なども整理しておきます。数列の場合は、言わば「変数が自然数」であるわけです。変数が実数になる事で、極限の定義なども1つ2つ文言が増えますが、基本的な考え方は同じです。

関数の場合の極限の定義: ε-δ論法 ■ 関数が連続であることの定義 ■ 微分と関数の連続性の関係 

関数の場合の極限の定義: ε-δ論法

まず、極限値となる値を含む任意の開区間を考える点は、数列の時と全く同じです。異なるところは、数列の場合において「n≧Nとなる任意のnについて」の箇所で、これを関数の場合にはどうするかという事が、問題になります。これに対しては、変数を無限大にする時と、特定の値に近づける時とで2つ定義を設けます。(本質的な意味は同じです。)

  • 変数を無限大にする時の関数の極限:\(\lim_{x\to \infty}f(x)\)
  • 変数を有限の値に近づける時の関数の極限:\(\lim_{x\to a}f(x)\)

数列の場合はn=1が変数の最小値ですが、関数の場合は x → 0 の時の極限なども考える事ができる、という事です。

関数の極限の定義①:変数を無限大にする時

この場合は数列の極限と大体同じ考え方です。ある値を含む任意の(小さな)開区間に、ある値以上の任意の変数に対する関数の値が全て含まれる事を定義にします。 $$\lim_{x\to \infty}f(x)=c$$ $$\Leftrightarrow c を含む任意の開区間 U に対して、x ≧\delta ならばf(x)\in U となる実数\delta が存在する$$ この場合、無限大∞は正の方向の無限大であり、それを明確にする場合は +∞ とも書きます。実関数の場合、変数をマイナスのほうの無限大にした時の極限も考えます。考え方は同じです。 $$\lim_{x\to -\infty}f(x)=c$$ $$\Leftrightarrow c を含む任意の開区間 U に対して、x ≦\delta ならばf(x)\in U となる実数\delta が存在する$$ 数列の時と同様、「任意の開区間」の部分を(小さな)正の実数\(\epsilon\) を用いた不等式を使っても同じ事です。 $$\lim_{x\to a}f(x)=c$$ $$\Leftrightarrow 任意の正の実数\epsilon に対しx ≧\delta ならば|f(x)-c|<\epsilon となる実数\delta が存在する$$

関数の極限の定義②:変数を有限の値に近づける時 この場合、極限値cと、変数を近づける対象の値 a の両方に対して小さな開区間を考えます。 $$\lim_{x\to a}f(x)=c$$ $$\Leftrightarrow c を含む任意の開区間 U に対して、x \in V_{\delta} ならば f(x)\in U となる a を含む開区間V_{\delta} が存在する$$ 不等式で記す場合は、関数側と変数側で2つの正の実数\(\epsilonと\delta\) を用意します。 $$\lim_{x\to a}f(x)=c$$ $$\Leftrightarrow 任意の正の実数\epsilon に対し、「|x-a|<\delta ならば|f(x)-c|<\epsilon となる」正の実数\delta が存在する$$

特定の有限の値に変数を近づける場合、対象が変な関数だと変数を「a より大きい側から近づけた時」と「 a より小さい側から近づけた時」に、極限値が異なる場合があります。そのような事があるので、解析学で厳密な考察をする場合は両者の極限を区別し、両者が一致する場合にその極限での「極限値」が存在すると呼ぶ事にしています。

尚、もし「右極限」と「左極限」の値が異なる場合には上記の という条件は満たされないのです。

$$「c を含む任意の開区間 U に対して、x \in V_{\delta} ならば f(x)\in U となる a を含む開区間V_{\delta} が『存在できない』」$$

それは、a を含む開区間の中で a よりも「大きい側」と「小さい側」とで、関数が別々の \(c_1 と c_2\) という値を含む開区間に含まれる事になってしまうからです。
参考までに、右極限と左極限が存在するけれども異なる値になる場合は上記の関数の極限の定義に当てはまらず、「極限値が存在しない」判定になる事を、一応式でも記しておきましょう。

関数の「右極限」と「左極限」 $$①右極限:\lim_{x\to +a}f(x)=c_1$$ $$\Leftrightarrow c_1 を含む任意の開区間 U_1 に対して、x\in [a, a+\delta_1)ならばf(x)\in U_1となる正の実数\delta_1が存在する $$ $$②左極限:\lim_{x\to -a}f(x)=c_2$$ $$\Leftrightarrow c_2 を含む任意の開区間 U_2 に対して、x\in (a-\delta_2,a]ならばf(x)\in U_2となる正の実数\delta_2が存在する $$ $$\lim_{x\to +a}f(x)=\lim_{x\to -a}f(x)=cならば、cを含む任意の開区間Uに対して$$ $$x\in (a-\delta_2,a+\delta_1)ならばf(x)\in U となるので\lim_{x\to a}f(x)は存在する。$$ 逆に右極限と左極限が異なる値であれば、上記のような定義の意味での極限値は存在できないのです。
2つの開区間\(U_1とU_2\)が共通部分を持たないように区間の幅を小さく取った時、a を含む開区間をどのようにとっても\(x\in U_1\) になる部分と\(x\notin U_1\) となる部分に分かれてしまいます。

  • \(x\in U_1 になる部分:[a, a+\delta_1)\)
  • \(x\notin U_1 となる部分:(a-\delta_1,a]\)
$$よって、\lim_{x\to +a}f(x)≠\lim_{x\to -a}f(x)であれば、「\lim_{x\to a}f(x)が存在する要件を満たさない。」$$

関数が連続であることの定義

関数が連続である事の定義も、極限の定義の延長線上にあります。三角関数や指数関数などの初等関数は連続関数です。
連続性の厳密な数学的定義は、物理などへの数学の応用ではそれほど重要ではないと思います。ただし、数学の解析学・微積分学の中では重要な基礎理論になりますので、考え方だけは見ておきましょう。

関数が「連続」である事の定義

関数の定義域内の実数(の点) a において関数が連続であるとは、次の条件を満たす事を言います: $$f(a)=\lim_{x\to a}f(x)$$ これは、1次関数、2次関数、三角関数、指数関数・・などの初等関数を単独で考える場合は「当然」の事なので、それほど重要とは言えないかもしれません。
数学の理論上、多くの場合に問題となるのは、次のような変な関数です:

  • 例①:「\(x=0 のときf(x)=0,x≠0 の時 f(x)=\sqrt{|x|}\sin \frac{1}{x}\)」という f(x)
  • 例②:「\(x=0 のときf(x)=0,x≠0 の時 f(x)=\sin \frac{1}{x}\)」という f(x)
これらに関して、x=0 の連続性を考える時、じつは①は連続で、②は不連続(連続でない)なのです。
このように、初等関数での感覚で言う「つながっている」事が必ずしも不明確でない関数を考える場合には数学的な定義を決めておく事は重要にもなるのです。(こういった関数が物理などへの応用で使えるかどうかは、また別の問題になります。)

関数が連続であるかどうかという事は、関数自体の性質を探求する事以外に、微分の理論においても重要な位置付けにあります。ある点で微分可能であるかどうかと関数の連続性が深く関わるからです。

参考:定義域の完備性、関数の連続性と一様連続性

普通は、関数の定義域(変数が取り得る値の範囲)を、実数全体であるとか、特定の閉区間や開区間を想定します。このような定義域は、実数全体の性質と同じく、「完備性」を持っていると呼びます。上記の説明においても、それを前提にしています。
他方で、あくまで理論上の話ですが、定義域として「無理数全体」などという無茶苦茶なものを考える事も数学上は可能なのです。これは、数直線上で言うとボコボコの「穴だらけ」の定義域です。
しかし、そのような滅茶苦茶な定義域上の関数でも、適当な関数を用意すれば上記の連続性の定義に当てはめて「『定義域上の』任意の点で連続である」という判定になってしまう事が知られています。
例えば、次のような簡単な関数を考えればじつはじゅうぶんです。

  • x>0の時 f(x)=1
  • x<0の時 f(x)=0
  • 定義域は、無理数全体

事の本質は、じつのところ「本来は不連続点と言うべき点を、定義域から除外さえしてしまえば不連続な点はない事になる」・・というところにあります。
より簡単な例では、1/xという関数でx=0で不連続「のはず」ですが、そもそもx=0を定義域から除外しておけば「不連続点はない」という、おかしな事になるといったものです。
これを解消するためには、「一様連続」というものを定義します。一様連続性の定義は次のようなものです。 $$任意の正の実数\epsilon に対し、定義域内で|x-y|<\delta を満たす『任意の2点』x,y に対して$$ $$|f(x)-f(y)|<\epsilon となるような、正の実数\delta が存在する。$$ この一様連続性の考え方は、微積分の理論でも使用する事があります。

微分と関数の連続性の関係

さて、微分や積分も極限の一種です。ここでは、微分について考察してみましょう。初等関数の微分を考える時は、前述の厳密な極限の定義を考える事よりも、上手な式変形をして明らかに極限値が分かるようにする事のほうが重要である場合が多いです。

他方で、変な関数も含めた一般の関数を数学的に考える場合は、どのような場合に微分が可能で、どのような場合に微分が不可能なのか?といった事を明確にしておくことも、理論的な位置付けとして重要なのです。

結論を言うと、定義域内での特定の点での微分可能性と連続性については、次の関係があります:

  • ある点で微分可能ならば、連続でもある
  • ある点で連続であっても、微分不可能な場合がある

「連続であっても、微分不可能な場合」とはどういう事かと言いますと、一番簡単な例は f(x) = |x| という関数です。これは、グラフで見るとx=0の点で「尖っている」関数です。このように、ある点で必ずしも「なめらかでない」場合でも、つながっていれば「連続である」という判定になります。(もちろん厳密には上記の定義に当てはまるか、式を使って判定します。)

しかし、 f(x) = |x| のx=0における状況を見ると、微分係数とは「傾き」であったはずですが、x=0では傾き+1と-1のどちらを採用するのかという話になります。このような場合、その点では「微分不可能」という判定をするのです。そのため、「関数 f(x) = |x| はx=0 で連続であるが微分不可能である」という事です。尚、「x≠0の任意の点で、 関数 f(x) = |x| は『連続であり微分も可能』 」です。

連続である事と微分可能である事は密接に関係していますが、
全く同じ事ではないので注意が必要な事もあります。

前述の極限と連続性の定義から考えると、 f(x) = |x| の微分係数はx=0 において、

$$右極限\lim_{h\to +0}\frac{f(x+h)-f(x)}{h}と左極限 \lim_{h\to -0}\frac{f(x+h)-f(x)}{h} は共に存在するが値は異なる$$

というパターンに該当します。
\(右極限\lim_{h\to +0}\frac{f(x+h)-f(x)}{h}=+1, 左極限 \lim_{h\to -0}\frac{f(x+h)-f(x)}{h} =-1\) で、異なる値というわけです。
そのため、極限値として厳密に定義に当てはめた場合、極限値としての微分係数も存在しない、という判定になります。

$$ f(x) = |x| の時、極限値としてのx=0での微分係数\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}は存在しない。 $$

つまり、直感的に考えて「傾きが一意的に定まらない」という事と、数学的に考えて極限値が存在しないという判定になる事は、一応調和しているわけです。

このような場合以外に、関数自体が無限大に発散する点においても、微分係数も無限大に発散し、微分不可能という判定にします。そのような点では、関数は「不連続かつ微分も不可能」という事になります。
尚、一応これは「微分可能ならば連続である」という事実の対偶命題を考える事により「不連続ならば微分不可能」と言う事もできます。不連続点では、どのような場合でも微分不可能というわけです。

今回お話した内容は、上記でも少し触れましたように、物理等への応用よりも、純粋数学的な内容の基礎事項という側面が強いです。ただし、有界な単調数列は収束列であるといった事は、円周率や自然対数の底といった重要な定数の極限値としての存在の根拠でもあり、これらの定数は物理や工学でも使用しますから、大まかな事は知っておいてよいのではないかと思います。

参考文献・参考資料


微分積分学〈1〉1変数の微分積分