円・球・円周率に関する基礎知識

序論:円と円周率の話 3.14はどこから出てくる?【動画】

円や球に関して、「なぜ学ぶのか」「どういう理論があるのか」・・という事についての、ごく大雑把な概要をまず見てみましょう。

円周率とは?なぜ値は3.14? ■ どうやって証明する? 

声優担当:ステ♪ 様 http://sute.tabigeinin.com/
円や球に対しては「円周率」が常につきまといますが、それについての話をしましょう。

円周率とは?なぜ値は3.14?


円周率とは、「円の直径円周の長さの比」の事であり、値は約3.14です。
直径が1メートルの車輪の円周の長さは、円周率を用いて
1×3.14=約3.14メートルと計算できます。円周率の正確な値は3.14159265・・・という、循環しない無限小数であり、「無理数」です。
【無理数である事は、背理法で示します。円周率に限らず、特定の数が無理数である事を示す方法は基本的には背理法です。】

円周率は円の面積の計算にも使えますが、まず「円の周の長さ」の計算に使う定数というわけです。


この「約3.14」という半端な数はどこから出てくるのでしょう?
円に内接する正6角形を考えてみてください
じつは、簡単な計算により、「円の直径×3」は、ちょうど「円に内接する正6角形の周の長さ」なのです。
この事実が、円周率を「約3」と教える事が、数学的に見て決して良いと言えない理由の一つです。

★悪名高い話ですが、じつは一時期、学習の負担を減らすために日本の学校では円周率を「約3」と教えよう、と主張された事がありました。
本当に大雑把な計算(例えば100くらいになるのか、1000くらいになるのかといった)であれば「3」でやってもよいと思いますが、正確な計算にはならないわけです。


次に、円に内接する正12角形の周の長さを計算してみると、おおよそ、円の直径×3.1058になります。
この「円周率に相当するような定数」は、円に内接する正24角形の場合は約3.1326、
正48角形の場合は約3.1393です。正96角形まで考えると、3.14が出てきます。
じつは、角をもっと増やしていくと、その値は正確な「円周率」の値に限りなく近づくのです。

どうやって証明する?

詳しい証明はこのページの後半に記しますが、概略を見てみましょう。


極限値として円周率が確かに存在する事の証明は少し面倒ですが、平面幾何と極限の基礎知識さえ知っていれば証明は可能です。
円に内接する正n角形と、円に外接する正n角形を考えます。
その中で、2つの頂点と円の中心で作られる三角形に注目します。
ここでじつは少し工夫が必要で、nに対してn+1ではなく、2nを考えます。

通常の数学的帰納法だとnに対してn+1を考えますが、ここでは2nを考えます。
それによって、考察はかなり簡単になるのです。


すると、内接する正2n角形の周の長さは
「内接する正n角形の周の長さより必ず大きい事」と、
「外接する正n角形の周の長さよりは必ず小さい事」が、比較的容易に示せるのです。


これは、内接する正n角形の周の長さを数列として見た時、「単調増加で上に有界」である数列になっている事を示しています。
そして、そのような数列は必ず極限値を持つという定理があるので、
円に内接する正n角形の周の長さは「nを無限大にした時に極限値を持つ」事が示されます。


同様に、円に外接する正n角形の周の長さも極限値を持つ事が示せます。
ここで、証明の中で導出している関係式の一つを用いると、2つの極限値は
一致する事を示せます。その値が、円周率と呼ばれる定数です。

円周の長さが直径と円周率の積で表されるという事実は、三角関数の微分公式が成立する根拠でもあるので、理論上、かなり重要な位置にあると言えます。

★三角関数の微分公式の導出には sin x < x < tan x という不等式を用います。
これは実質的には、「内接正n角形の周の長さ<円周の長さ【極限値】<外接正n角形の周の長さ」という関係式と同等です。
円周や円弧の長さは極限値なので、解析学(微積分学)的には本来は多少詳しい考察や証明が必要になるというわけです。

円と球の図形的な性質と公式

円の図形的性質で特に重要なものは何か? ■ 円と球に関する公式 

円の図形的性質で特に重要なものは何か?

円と球の最も基本的な性質は、
円周や球面上の各点から中心までの距離(=半径)が必ず「等しい」という事です。
これは、証明すべき事というよりは、むしろ「そのような平面・空間における点の集合を円・球と呼ぶ事にする」・・という考え方によるものです。(つまり、そもそもの定義であるとするわけです。)

じつのところ、円や球に関して一番重要な図形的性質はそこのところで、その性質によって、色々な計算が扱いやすくなるので物理等でもモデルとして考察の対象となるわけです。

「半径の2倍」の長さを「直径」と言います。
円周の長さは「直径」と円周率の積に等しいと表現できるわけです。

円に関する平面幾何学的な性質や定理は多くありますが、物理等で重要になるのは半径(および直径)、接線、法線等に関する基本事項が多いと思われます。
円周角の定理とは、円周上の3点から作られる三角形の1辺を固定した時、どのように三角形を作っても1つの角の大きさが必ず等しくなるという事実です。円の半径が一定である事から2等辺三角形が作られる事によって証明されます。(物理や大学数学では、それほど多くは使わないです。)

もちろん、回転運動などのように実際に「円」という図形を扱うために考察の対象とする事もありますが、そこでもまず基本となるのは中心からの距離が等しいという性質なのです。

また、見た感じ明らかではありますが、円は直線ではなく「曲線」になります。
その他には、円周上の法線(接点を通り接線と垂直に交わる直線)が中心を通る事も重要です。

円と球に関する公式

円に関する公式で、物理でも使用する公式は、円周、円の面積、球の表面積、球の体積の公式です。要するに、円や球の面積・体積に関する基本公式は大抵のものは用いるわけです。
その理由は、基本的には、あまり変な図形を考えるよりも、円や球という「考えやすい」図形をモデルとして採用する事で、物理現象等をシンプルに捉えるためである事が多いと思います。

公式

$$L=2\pi r【円周の長さ】$$ $$A=\pi r^2【円の面積】$$ $$V=\frac{4}{3}\pi r^3【球の体積】$$ $$S=4\pi r^2【球の表面積】$$

これの証明については、おそらく一番めんどくさいのが「円周」のところであって、それが「真」であるなら残りは積分の理論を用いれば比較的理屈としては簡単です。(もっとも、積分の解析学的な理論も厳密にやるのであれば結構面倒ではありますが・・。)

円周に関する公式が出ると、次に → 円の面積 → 球の体積 → 球の表面積 という形でどんどん公式が導出できます。

積分を用いると、最初に円の「面積」を出す事も、計算上は可能なのですが、この計算にはじつは三角関数への置換積分を利用します。そこで三角関数の微分公式を用いるわけですが、肝心のこの三角関数の微分は、円周率が極限値として存在する事を前提としています。そのため、円周率の存在証明として適切かどうかは相当怪しいですが、円周率の正確な数値3.14159265・・を計算するための手法としては面積を利用する事は有効であり、円周率を直接式で表す種々の公式には円の面積が利用される事も多いのです。

円を正多角形で近似すると、その面積は「周の長さ」×「半径」÷2になります。しかし同時に周の長さは「直径(半径の2倍)」なのですから、結局、面積は「半径の2乗」と円周率の積になるわけです。これが、円の面積公式の一番簡単な導出かと思います。

円周の長さに関して、円を近似する正多角形の数を増やしていきます。この時、「周」を構成する1つ1つの三角形の辺は短くなっていきますが合計すると円周の長さ(=2×半径×円周率)に近づいていきます。
他方、その時に三角形の高さは「半径」に近づいていきます。

円の面積に関しては積分を使った導出も可能で、その場合は直交座標を極座標に変換して、置換積分によって計算します。※この時、三角関数の微積分を用いますので、円周に関する公式は真であると認めて話を進めている事に注意。

球に関しては、じつは体積のほうが簡単です。これは、円の面積の公式を利用して、さらに積分を行えばよいのです。1つの軸に沿った断面積の関数が分かれば、体積が計算できます。この場合、「その断面積が円」ですから、円の面積公式が使えるのです。
具体的には、次の積分を計算します。

$$V=2\int_0^r \pi (\sqrt{r^2-t^2})^2dt= 2 \pi \int_0^r (r^2-t^2)dt=2\left[tr^2-\frac{1}{3}t^3\right]_0^r=2 \pi \cdot\frac{2r^3}{3}=\frac{4}{3} \pi r^3 $$

これで球の体積公式になります。この計算では、平方根が消えるので置換積分は必要ありません。

最後に、表面積はどうするのかと言うと、結論を言うと球の体積の公式をrで微分して得るのです。これは、半径を変数として円の表面積を積分すると球の体積になるはずなので、その逆算により表面積の公式を導出するのです。

極限値としての円周率の存在証明

円周率が極限値として存在する事は、同一円に対する内接正n角形と外接正n角形の周の長さのn→∞の時の極限値が存在する(両者は一致する)事によって証明します。

証明のステップ  ■ \(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) がともに存在する ■ \(\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n\) を示す 
3以上のどの自然数から始めても\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) は同じ値に収束する 

証明のステップ

これは少々手間がかかりますが、詳しく述べておきます。まず、次のように設定をします。

  • 内接正n角形の周の長さ:\(L_n\)
  • 外接正n角形の周の長さ:\(R_n\) 
  • 円の半径:1とする(一般のrでやっても同じ結果になります。)

$$L_nの2n等分: \frac{L_n}{2n}=a_n \hspace{15pt} R_nの2n等分: \frac{R_n}{2n}=A_n $$

そのうえで、次の手順により証明を行います。

  1. 任意の3以上の自然数に対して \(L_n<L_{2n}<R_{2n}<R_n\) を示す。
    これは\(L_nとR_n\)が有界な単調数列である事、
    つまり\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) がともに存在する事を示す事になります。
    式で示してもよいし、図形的にも示せます。
  2. \(\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n\) を示す。
    これは、図形的考察から\(L_nとR_n\)に関する次の2公式(アルキメデスの公式とも)により示します。 $$R_{2n}=\large{\frac{2L_nR_n}{L_n+R_n}}$$ $$L_{2n}=\sqrt{L_nR_{2n}}$$
  3. 3以上のどの自然数から始めても\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) は同じ値に収束する事を示す。
    これは、n、2n、4n・・という形の数列であるために補足的に示すもので、通常のn=1,2,3,・・の形の数列であれば必要のない考察です。
    図形的考察から、2以上の任意の自然数mに対して \(L_n<L_{mn}およびR_{mn}<R_n\) である事を示し、それにより証明します。

① \(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) がともに存在する

これは、次のステップで見るアルキメデスの公式を用いてもよいのですが、
図形的に三角不等式でも示せますから、まず図を見てみましょう。
上記でも触れましたようにnに対して2nを考える事で作図と計算が容易になります。
これに対して、nの次にn+1を考えると作図が非常に難しく、関係も複雑になってしまい非常に計算しにくくなってしまうのです。

この方法で作図した時、内接のほうに関しては、正n角形と正2n角形とで共有する点はありますが共有する辺はありません。
他方、外接のほうは、 正n角形と正2n角形とで 共有する点はありませんが部分的に共有する辺があります。

図を見ると(正6角形と正12角形の例ですが)、内接のほうは、正2n角形の2辺と正n角形の1辺からなる三角形に着目します。すると三角不等式によって\(L_n<L_{2n}\) が直ちに示されます。

外接のほうは、少し込み入るのですが、まず、図では次のように作図しています。

  1. 内接正n角形と内接正2n角形を、図の左側のように作図しておく
  2. 内接正n角形(正2n角形でもOK)の頂点での円の接線を引く。
  3. 接線同士をつなぎあわせてると、外接正n角形になる。
  4. 外接正n角形の各頂点から円の中心に向かって直線を引き、円との交点での接線を引く。
  5. 手順2と手順4で引いた接線を全て結び合わせると、 外接正2n角形になる。

この時、外接正n角形と外接正2n角形は共有する辺を持ちますが、共有しない部分もあります。その共有しない部分について三角不等式を適用すると、外接正2n角形の周の長さは、必ず外接正n角形の周の長さより小さい事になります。
よって、\(R_{2n}<R_n\) が示されます。

さらに、外接のほうの作図方法をよく見ると、内接正n角形の周の長さは外接正2n角形の周の長さよりも必ず短い事が分かります。(図形的に正確に言うと、相似な三角形の対応する辺同士になるので。)
よって、\(L_{n}<R_n\) です。
これは、任意の3以上の自然数で成立しますから、\(L_{2n}<R_{2n}\) でもあります。
すると、\(L_n<L_{2n}\) かつ \(L_{2n}<R_ {2n} \) より、\(L_n<L_{2n}<R_{2n}\) であり、
さらに \(R_{2n}<R_n\) でもあるのですから \(L_n<L_{2n}<R_{2n}<R_n\) が示されます。

よって、(解析学の基礎的な定理の証明は必要ですが、)次の事が示された事になります:

  • \(L_n\) は 単調増加数列で上に有界であり\(\lim_{n_\to \infty}L_n\) は収束し、従って存在する。
  • \(R_n\) は 単調減少数列で上に有界であり\(\lim_{n_\to \infty}R_n\) は収束し、従って存在する。

② \(\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n\) を示す。

さて、このようにして \(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) が収束する事が示されましたが、これだけだとじつは「同じ値に収束する」かは、分かりません。
別々の値に収束する可能性も否定できないのです。もしも、別々の値に収束するとすれば、一体どちらを正式な円周として採用すべきか、理論がぐちゃぐちゃになってしまいますね。
しかし実際は、両者は同じ値です。それを示します。

これを示すには、多少の手間はかかりますが \(L_nとR_n\)の関係を、図形的考察から強引に導出する方法が確実です。証明の中ではここが一番面倒くさいかもしれませんが、必要なのは平面幾何の基本知識だけです。

周の長さの2n等分\(\frac{L_n}{2n}=a_n と \frac{R_n}{2n}=A_n\) は、ここで使います。
また、導出のポイントとして重要なのが、
「内接正n角形の隣り合う2点の中点と円の中心との距離」で、これを\(p_n\) とします。
図で言うと\(OP=p_n,\hspace{5pt}OH_1=p_{2n}\) です。

まず最初のステップとして、次の2式が得られます。三平方の定理から

  • 内接正多角形で作られる三角形の相似から\(\frac{A_n}{a_n}=\frac{1}{p_n}\Leftrightarrow A_n=\frac{a_n}{p_n}\)
    また、これにより(または同様の考察により) \(A_{2n}=\frac{a_{2n}}{p_{2n}}\)
  • 単純に三平方の定理により、\(a_n^2+p_n^2=1^2 \Leftrightarrow p_n^2=1-a_n^2\)

次のステップとして、図の三角形OABに着目した2式を得る事を考えます。片方は、同一面積を2つの辺と高さで表して得る式です。もう片方は、少々トリッキーですが図の\(OH_2\)の長さを2通りの方法で表す事によって得ます。

  • 同一三角形の面積を2通りの方法で表す事により、\(a_{2n}p_{2n}=a_n\)
  • \(H_1 が AB の中点、H_3がBH_2 の中点\) である事により\(OH_3=p_n+\frac{1-p_n}{2}=\frac{1+p_n}{2}\)、
    三角形の相似により \(OH_3=p_n^2\) となるので\(p_n^2=\frac{1+p_n}{2}\)\(\)

以上の式をまとめると、

  • \(A_n=\frac{a_n}{p_n}\hspace{10pt}A_{2n}=\frac{a_{2n}}{p_{2n}}\hspace{10pt}p_n^2=1-a_n^2\)
  • \(a_{2n}p_{2n}=a_n\hspace{10pt}p_n^2=\frac{1+p_n}{2}\)

これらを組み合わせると次の関係式が得られます。ちょっとだけ、計算の工夫は必要です。

$$A_{2n}=\frac{a_{2n}}{p_{2n}}=\frac{ a_{2n} p_{2n} }{ p_{2n} ^2}= =\frac{ 2a_{2n} p_{2n} }{ 1+p_{n} }=\frac{a_n}{ 1+p_{n} } = \frac{A_np_n}{ 1+p_{n} } =\frac{a_n}{A_n}\frac{A_n}{1+\frac{a_n}{A_n}}=\frac{a_nA_n}{a_n+A_n} $$

$$また、4a_{2n}^2=4\frac{a_n^2}{4p_{2n}^2}=\frac{2a_n^2}{1+p_n}=2a_n\frac{A_np_n}{1+p_n}=2a_nA_{2n} ∴ 2a_{2n}=\sqrt{2 a_nA_{2n} }$$

まとめると、次の2式になります。

$$ A_{2n}= \frac{a_nA_n}{a_n+A_n} \hspace{10pt} 2a_{2n}=\sqrt{2 a_nA_{2n} } $$

ここで、\(L_n=2na_n,R_n=2nA_n\) でしたから、整理すると次のように、目的の公式が得られます。

$$ L_{2n}= \frac{2L_nR_n}{L_n+R_n} \hspace{10pt} L_{2n}=\sqrt{ L_nR_{2n} } $$

これらのうちどちらを用いてもよいのですが、平方根のほうを使ってみましょう。
\(\lim_{n_\to \infty}L_n=\alpha,\hspace{5pt}\lim_{n_\to \infty}R_n=\beta\) とします。(収束する事は示しているので、このようにおいてよいわけです。)

$$すると、\alpha=\sqrt{\alpha \beta} ですから、\alpha^2= \alpha \beta \Leftrightarrow \alpha(\alpha – \beta)=0 $$

$$\alpha>0 ですから、\alpha=\beta ∴\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n$$

④ 3以上のどの自然数から始めても\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) は同じ値に収束する

さて、これでもう「証明終り。円周率は2つの数列の同じ極限値として確かに存在する」・・でも構わないのですが(一般にはそうしてます)、もう少し考察をしてみましょう。上記で示したのは、例えば正6角形から始めて、12,24,48,96・・とした場合に極限値が確かに存在し、正5角形から始めた場合は10,20,40,80,・・とした場合に、やはり確かに極限値が存在するという事です。

では、それらは確かに一致するでしょうか?

上記の証明ではnに対して2nを考えましたが、
じつはこれはnに対して3nでも4nを考えてもよいのです。

外接のほうは、2倍の角数を考えた時と同じく、内接正多角形を基準にして作図を考えると多少分かり易いです。

実際は任意の自然数mを使ってnに対する内接・外接正(mn)角形を用いる事で、上記同様の極限値の存在の証明ができます。(内接・外接ごとの極限値の存在まででじゅうぶんです。)

図形的に考えてみて、三角不等式の組み合わせか、適切に区切って傾きによる線分の長さを比較します。
それによって、\(L_n<L_{mn}<R_{mn}<R_n \) となる事が分かります。
つまり、上記では\(L_n<L_{2n}<R_{2n}<R_n \) を証明したわけですが、
同様に \(L_n<L_{3n}<R_{3n}<R_n \), \(L_n<L_{4n}<R_{4n}<R_n \),・・も成立するという事です。

さて、すると、例えば5と7で始めた場合で、5からの場合は7倍の角数、7の場合は5倍の角数を考えてみましょう。
それぞれ\(L_5,L_{35},L_{245},\cdots\) \(L_7,L_{35},L_{165},\cdots\) のような数列になります。
ここで、\(L_{35}\) から始めた場合も同様に収束するわけで、c に収束するとします。

ここで、\(\lim_{n\to \infty}L_{35n}=c\) とは、cを中心としたどんな小さい開区間にも、あるn以上の値の\(L_{35n}\) は全て含まれる事を意味します。【極限値は、解析学的にはそのように定義します。】
ここでそのようなあるn以上の、35 の倍数の中には、\(L_{5}やL_{7}\) から始まったものも含まれています。これらの数列が全て単調増加数列である事に注意すると、結局、そのあるn以上の値では、\(L_{5n},L_{7n},L_{35n}\) は全てcを中心とした同じ開区間内に含まれる事になります。これは、これらが同じ極限値 c を持つ事を意味します。

つまり、どんな(3以上の)自然数 n,m から始まろうとも、極限値は nm で始めた時と同じであるわけです。さらに別の自然数 N から始まるものを考えても nmN から始めた時と同じ値に収束するわけですから、結局どの番号から始めても、内接、外接の場合ともそれぞれ同じ値に収束する事を意味します。

また、同じ自然数から始まって倍にする数を変えたとしても、同じ考え方によって同じ値に収束する事になります。今、2倍にしていく場合は、内接と外接とで極限値が一致する事は証明済です。

これによって、内接正多角形と外接正多角形は n→∞ にした時に、確かに1つの極限値に収束すると言えます。これは、半径1の円に対して言えたわけですが、半径がrの場合は、三角形の相似により、周の長さはr倍になりますから極限値は半径が1の時の円周のr倍になります。 ですので、半径1の円の円周の長さを何かの定数の記号でおくのです。
結論を言うとこの定数を\(2\pi\) とおき、半径1つまり直径が2の円の円周の長さは\(2\pi\)であるとします。半径がrの場合は\(2\pi r\) となり、これは直径と円周率の積と言う事もできるわけです。

★ 3.14という値は?

上記の極限値としての円周率の存在証明では、円周率の値が具体的にいくらかという話が全く出てきていません。

しかし、このページの最初の概要で触れましたように、具体的な内接正n角形の周の長さについて、n=6の場合はぴったり「直径×3」、n=12の場合は「直径×約3.1058」となり、内接の場合はn=96(外接の場合はn=48)で3.14までの値は確定します。 【手計算でやる場合は、具体的な三角関数の値を半角の公式・マクローリン展開等で出すか表を見るなどして計算します。値が細かいので、結構面倒です。】

3.14以降の円周率の小数点の計算は、具体的に周の長さを計算する方法だとかなり大変なので、果てしなく小数点を出すような場合は何らかの「円周率を直接記述する公式」(基本的に無限級数)を用いて、しかもコンピューターに計算をやらせる事になります。

それらの「公式」は、円の面積を使う場合や、三角関数や逆三角関数(の微積分)をもとに作られている事が多いです。公式の種類によって、小数点計算が速い・遅いなどの特徴があります。マチン型の公式と呼ばれるものは計算が速く、逆にライプニッツ級数は収束が遅くて小数点計算には不向きです。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です