ベクトルの微積分(力学での例)

ベクトルに対する微分と積分について、古典力学での使われ方を例に具体的に見て行きます。

ベクトルの基本事項(高校数学)や、逆にこのページの内容の発展事項であるベクトル解析については別途に述べています。

物理で重要な事は、2つの方向への力同士の「合力」は、ベクトルの加算・減算によって計算すればうまく行く事が「実験で」確かめられているという事です。運動方程式により加速度は力に比例しますから、加速度の加算・減算もベクトルで行う事ができます。(また、速度に関しても同じようにベクトルで考えてよい事になります。)

ベクトルの微分と積分の定義

では、ベクトルの微分の定義を説明いたします。定義自体は、簡単です。
それぞれの成分を微分したものを考えるという、それだけです。

表記に慣れなかったりするかもしれませんが、「考え方はシンプルで簡単」という事が、このページで一番知っていただきたい事です。ベクトルの微分や積分は、要するに計算の方法としては「成分ごとに計算すると」いうものです。ですので、1つ1つ丁寧に整理して計算すれば済む話であるわけです。

位置座標を表すベクトルの各成分をある1つの変数で微分したものを、ベクトルの微分と呼び、ベクトルに対して微分操作の記号をつけた \(\frac{d}{dt}\overrightarrow{X}(t)\) という表記を行います。 \(\frac{d \overrightarrow{X}(t) }{dt}\) などと書いても同じです。

ベクトルの微分の定義(1つの共通変数による微分)

3次元の空間ベクトルの場合を記しますが、何次元ベクトルでも同じです。 $$\frac{d}{dt}\overrightarrow{X}(t)=\left(\frac{dx}{dt},\frac{dy}{dt},\frac{dz}{dt}\right)$$ $$x,y,z はtの関数:x=x(t), y=y(t), z=z(t)$$ この共通の変数の事を、数学的には「パラメータ」または「媒介変数」と言います。

ベクトルの微分などと言うと一見わけがわからないように思えるかもしれませんが、このように意味と定義を丁寧に見ると、それほど難しくはないのではないでしょうか?表記については確かに慣れないと扱いにくさを感じるかもしれませんが、少しずつ触れていけば慣れると思います。

ただし、何で微分するかには少しだけ注意すべきで、力学などで物体の「位置」と時間の関係を分析する場合は、時間tで微分します。この時、各成分は時間の関数で表すものとします。(そうでなければ、当然tでの微分はできません。)

具体的な微分の考え方

ベクトルの微積分を1つの変数tで行う時は、
ベクトル(x, y, z)の各成分 x, y, z が「tの関数」x(t), y(t), z(t) である場合を考えます。
例えば、\(x(t)=2t, y(t)=3t, z(t)=t^2\) などです。
この成分を持つベクトルをtで微分するのであれば、
それぞれの成分をtで微分すればそれでよいというわけです。

例えば、運動する物体の位置座標を(x, y , z)とした時、この座標が時間ごとに変化するので x, y, z は「時間tの関数で表せるはず」と考えるわけです。しかも、物体は連続的に動くはずなので、その時間変数 t で「微分も可能である」と考えるわけです。物体の位置座標を表すベクトルの時間微分を、物理では特に速度ベクトルと呼びます。

ベクトルの高階微分についても考え方は同じで、各成分を2階微分したものを、そのベクトルの2階微分として表記します。位置座標を表すベクトルの時間変数tによる2階微分は、加速度ベクトルと呼ばれます。

微分が可能であるという事は、積分も可能です。

ベクトルに対する積分も基本的に同じ考えであり、ベクトルの各成分を同じ変数で積分したものを、1つのベクトルに対する積分として表示します。

ベクトルの積分(1つの共通変数による積分)

不定積分で記しますが、定積分でも同じです。 $$\int \overrightarrow{X}(t)dt=\left(\int x(t)dt,\int y(t)dt,\int z(t)dt \right)$$ また、微分されたベクトルを積分すれば、「各成分の微分」の積分ですから、もとのベクトルに戻ります。つまり表記上、ベクトルに関しても「微積分学の基本定理」が成立します。 $$\int \frac{d}{dt}\overrightarrow{X}(t)dt=\left(\int \frac{d}{dt}x(t)dt,\int \frac{d}{dt}y(t)dt,\int \frac{d}{dt}z(t)dt \right) $$ $$=\left(x(t)+C_1,y(t)+C_2,z(t)+C_3 \right)= \left(x(t),y(t),z(t) \right)+(C_1,C_2,C_3)=\overrightarrow{X}(t)+\overrightarrow{C}$$ $$\overrightarrow{C}は定ベクトルで、\overrightarrow{C}=(C_1,C_2,C_3)$$

ベクトルの積分に関しては、後述しますように、「内積の計算をしてから積分する」というものもあります。これは接線線積分や面積分の考え方であり、物理への応用で重要な考え方になります。

応用例:ベクトルの微分による等速円運動の考察

力学の基本的な例の1つとして、等速円運動というものがあります。これは、その名の通り、同じ「速さ」で円運動を延々とぐるぐるしている運動を言います。

ここで「等速円運動」とは「速さ」が同じである運動を指していて、「速度」は各位置ごとに異なります。なぜかというと、円運動なので向きが常に変化しているためです。
ベクトルで言うと速度ベクトルの「大きさ」だけが一定で、向きは各位置ごとに常に変化するという運動である事を指します。

そのように物体が等速円運動をしている時、「いったいどのような力が物体に働けば、そのような運動が生じるだろう?」という問題があります。

これは、結論を先に言うと「円の中心に向かって同じ大きさの力が働けばよい」というのが答えです。これを数学的にどのように導出するのか?と言うと、まず運動方程式を考える必要があります。それと、べクトルを考える事がポイントです。以下、具体的に見ていきましょう。

三角関数は別名「円関数」とも言います。座標またはベクトルの考え方を用いれば、円運動の分析に用いる事もできるわけです。微分する時には、合成関数の微分法を用いる事にだけ注意しましょう。

少し数学的に込み入る話ですが、
座標成分自体を極座標に変換して運動方程式を考える事もできます。
すなわち、速度ベクトル、加速度ベクトル、力ベクトルの成分を「x成分」と「y成分」ではなく「r成分」と「θ成分」で表す方法です。
ただしここではその考え方をする必要は無く、ベクトル自体の成分は直交座標系のx,y,zの成分で考えれば良い事になります。

空間上の運動に対して運動方程式を作る時は、ベクトルのそれぞれの成分に対して運動方程式を作ります。つまり、1つの運動に対して運動方程式は「3つ」できるのです。その3式を解く事で、運動の分析ができるというのが、初歩的な力学での一般論です。

運動方程式

$$\overrightarrow{F}=m\frac{d^2 \overrightarrow{X}}{dt^2}$$ $$\overrightarrow{F}=(F_x,F_y,F_z),\hspace{5pt}\overrightarrow{X}=(x(t),y(t),z(t))$$ つまり(最大で)3つの微分方程式ができます。 $$①F_x=m\frac{d^2x}{dt^2},\hspace{10pt}②F_y=m\frac{d^2y}{dt^2},\hspace{10pt}③F_z=m\frac{d^2z}{dt^2}$$ (初歩的な微分方程式の解き方については以前の記事で詳しく記しています。)

ただし、この等速円運動の分析の場合では、じつは式は「2つ」でよいのです。その理由は次の通りです。

同じ円運動といっても、空間上であらゆる角度に傾いた平面上の円運動が考えられます。しかし、物理ではこのような時、「座標系のほうを物体の運動に合わせてあげる」ということをやります。実際に物体が運動している平面に、xy平面を合わせてあげるのです。

すると、z軸方向には物体は運動しておらず、どんな時刻でも位置座標のz成分は0ですから、あってもなくても同じ事であって、考察の対象から除外します。こういう事は、物理でよくやります。

ですので、運動方程式をベクトルの各成分に対して作る時も、
z成分については\(F_z=m\cdot 0=0[N]\) 「力は一切働いてません」という、数式で考察するまでもない結果が出るだけなので、「考えなくてよい」とするわけです。

というわけで、平面ベクトルで表される運動として、分析をします。

この時、極座標を使うと話は単純になり、計算も楽です。等速でぐるぐる回っているという条件から、一定の角速度\(\omega\)[rad/s]【rad:ラジアン(これは省略する事もできます)s:秒】で運動していると捉えます。

すると、物体の位置座標はどのように表せるかというと、三角関数を用いればよいのです。円の半径をR[m] 【m:メートル】とすると、x座標は R cos(ω t)、y座標はR sin (ω t) になります。

ベクトルで書くなら、\(\overrightarrow{X}=(R \cos (\omega t),R \sin (\omega t))\)

この場合は、位置座標の成分が時間の関数として明確になっているので、これを時間tで2階微分して加速度にして、質量mを掛け算すれば「力」になります。ですから、ここでは微分方程式を解く必要はありません。

x = R cos(ω t) と y = R sin (ω t) を、tで2階微分しましょう。これは、合成関数の微分になっているので1回の微分ごとに ω が掛け算される事に注意する以外は、初歩的な微分計算ですので結果はすぐに出ます。結論は次の通りです。

$$\frac{d^2x}{dt^2}=-R\omega^2 \cos (ω t) ,\hspace{10pt} \frac{d^2y}{dt^2}=-R\omega^2 \sin (ω t) $$

$$ \overrightarrow{F} =m\frac{d^2 \overrightarrow{X}}{dt^2}=( -R\omega^2 \cos (ω t) , -R\omega^2 \sin (ω t) )=-mR\omega^2( \cos(ω t), \sin(ω t) )= -mR\omega^2 \overrightarrow{X} $$

この結果から、考察できる事はいくつかあります。

計算結果から考察できる事
  1. 力の「向き」は常に中心方向を向いている:
    結果を見ると、元の位置座標の定数倍で、しかもマイナスがついています。これは、物体から見ると、力のベクトルが原点を向いている事を意味するのです。
    (★位置座標のベクトルは原点から物体に向かう向きのベクトルである事に注意。)
  2. 力の大きさは、時間によらず定数:
    力の大きさは、「力ベクトルの『大きさ』」を計算すればよいのです。
    この時、\(\cos^2(ω t)+\sin^2(ω t)=1 \) である事に注意します。時間を含む部分は、1になって「消えてしまう」わけです。
    すると、\(|\overrightarrow{F}|=mR\omega^2\) となります。
  3. 力の大きさの計算から、
    力の大きさは質量、半径、「角速度の2乗」のそれぞれに比例する事が分かります。

等速円運動のように、力ベクトルが常に中心方向を向いているとき、
物理ではそのような力を「中心力」と呼びます。

さらなる学習・ベクトル解析に向けて

今回はこれで終わりますが、ベクトルの微積分の話自体は、じつはまだ続きます。
今回主に扱ったのは、ベクトルの3つの成分が共通の変数の関数、時間tで表される場合でした。
これに対して、物理ではさらに、「位置によって力等が変化する」場合を考えます。 力の種類で言うと、重力や電磁力が該当します。
その場合、ベクトルの各成分が位置座標x、y、zの関数であると考えるのです。
このようなベクトルを「ベクトル場」と言い、それについての種々の微積分を考える領域を、「ベクトル解析」と言います。(このページで扱った内容や、ベクトルの初歩の内容も含めてベクトル解析と呼ぶ事もあります。)
このベクトル解析の考え方は、電磁気学や流体力学で使う他に、物理学一般でも使います。
このベクトル解析の領域は、初見だと多分かなり分かりづらいかと思います。しかし基本的には、今回のページで述べたような、ベクトルを成分ごとに分けて丁寧に考える事、内積の定義に従って丁寧な計算を進める事によって理解できるような体系になっています。

無限級数とは?

このページでは無限級数について説明します。数学での無限の意味についても考えてみましょう。
【※あくまで数学での計算での扱いという意味で、哲学的意味などは別問題です。】

こちらは、このページで説明に用いているイラスト・漫画等のスライドです。

無限級数とは?その形と取り扱い方

数学で扱う無限とは「上限等の制限」を設けないという意味に近いです。 物理では「十分大きい」等と言い換えられます。これが1つのポイントです。

「無限個の和」であっても、有限の範囲に「収束」すれば有限の数として扱える事が、数学でも物理でも1つの大きなポイントです。物理では、一度無限級数の形にしたうえで、計算結果に影響の少ない項を0とみなして少ない有限項の和に「近似」するという使い方も事も非常に重要です。

無限級数とは?無限個の項の和

まずは、「無限級数」(infinite series)というものの「形」を、見てみましょう。
数学や物理で、こういうものがあったら、それを無限級数と呼ぶ、という事です。
無限級数の事を、単に「級数」と呼ぶ事もあります。その場合でも、「無限個の項の和」を表します。

「無限級数」(infinite series) の意味

無限級数とは、無限和とも言い、「無限個」の項の和で表される値、数列、関数などを指します。
項の数が、10個、100個、1000個、1億個、それ以上と、限りなく「無限に多くある」という事です。(※用語の使い方として、単に「級数」と言っても、それは無限級数を表します。)

$$例①(値・数列):自然対数の底 e = 1+1+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\cdots$$ $$例②(値・数列):調和級数 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots$$ $$例③(関数):e^x のマクローリン展開\hspace{5pt} e^x= 1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots$$

これらの式の一番右にある「+・・・」というのが、「無限級数」である事を表します。
また、あくまで表記の違いですが、和を表す「シグマ記号」\(\Sigma\) と、「無限大」を表す\(\infty\) を用いて、無限級数は次のようにも書かれます。 $$無限級数で表した\hspace{5pt}e\hspace{5pt}のシグマ記号での表記:\sum_{n=0}^{\infty}\frac{1}{n!}=e$$ $$全く同じものを、\lim_{n \to \infty}\sum_{j=0}^n\frac{1}{j!}=e\hspace{5pt}とも書きます。$$

1+2+3+4+5+6+7+・・・なども無限級数です。無限に加えていきます。項数が多くても(例えば100万個)、有限の個数で止まるならそれはあくまで有限の和であり、数学では無限級数とは呼びません。(ただし、物理では。そのように「じゅうぶん大きい」数を「無限とみなす」事はよくあります。)びっくりマーク「!」は数学では「階乗」と言い、3!=3×2、4!=4×3×2、5!=5×4×3×2、・・などを表します。
このページの後半でも触れますが、いわゆる無限小数も無限級数の仲間です。

このような無限項の和で表される形の数式があったら、それは無限級数である、という事です。
数列の形 \(a_1+a_2+a_3+\cdots\) で書かれる事もあります。(シグマ記号を使えば \(\sum_{n=1}^{\infty}a_n\))

和(つまり合計、足し算、加算)を表すシグマ記号で無限級数を表す場合は、「始まりの数」については、n=0からでもn=1からでも、n=2からであっても、もっと大きいn=1000からであっても、終わりのほうが無限大であれば無限級数です。

! ちょっとだけ注意:点点点「・・・」の使い方

\(1+\frac{1}{2}+\frac{1}{3}+\cdots\) や、\(a_1+a_2+a_3+\cdots\) の「・・・」が、「無限」を表していると実質的に捉えてよいのですが、じつはこの「・・・」表記は、あくまで便宜的に使用しているようなところがあります。
「+・・・」が、式の一番右に書かれていたら、それは「無限」を表すと思ってほぼ間違いないです。
他方で、この「・・・」という記号が、「『有限の項数』の和の間に書かれている」場合は、「有限項の和の『省略記号』」という意味になります。この点は、少し注意してください。
例えば次に記してあるのは、ある数列の「『n = 1000』までの和」です。この式でも「+・・・+」と書かれていますが、じつはこれは単に「1000 項も書くのが嫌なので」途中を「・・・」などと書いて省略しているだけなのです。従って、そのような場合は「無限個」を表しているのではなく、「有限個の項の表記上の省略」を表すという事になります。 $$S_{1000}=1+2+3+4+\cdots+999+1000\hspace{10pt}この場合の\cdotsは途中の有限個の和の「記載省略」の意味$$

では次に、そもそも「無限」というものを数学ではどのように考えるのか、どのように扱うかについて考えてみましょう。これは、何のために無限級数を考えるのかという、学ぶ目的とも大いに関係します。

無限は必ずしも抽象論ではなく、有限との裏返しの関係

「無限」を、数学では「どういう取り扱い」をするのかという事に絞ってシンプルに要点をつかみましょう。考え方自体は、非常にシンプルです。そのシンプルな考え方から始まって、いろいろな考察をする事により、様々な数学的事実や物理での使い道を探求する事が可能になります。

自然数と整数の場合の「無限」の扱い

どれだけ多くの項数があっても、「あるところで止まる」ならそれは「無限ではない」=「有限である」という事です。数学的には、そこがポイントになります。

数学と言わず日常いつも使っている「数」には、上限を設けませんよね?
ポイントは、ものすごく大きい数・・例えば「100億」などを考えても、それが「最大の数?」かというと、例えば「それよりも1だけ大きい数」などを、考えてもよいわけです。1000000000 に対して、 1000000000 + 1 = 1000000001 を考えてよいわけです。つまり、1,2,3・・と数える自然数は「無限に」大きくなります。

数学で言う「無限」とは一体何か?

無限大とは何かを数学的に説明すると、次のようになります。

  • 無限に大きい」とは:
    どんな自然数(正の整数) N を選んでも、「それよりも大きい別の数 M 」が必ず存在する
  • マイナス符号がついた負の数が無限大に「小さい」場合も考える事ができます。
    どんな整数 N を選んでも、「それよりも小さい別の(負の)整数 M 」が必ず存在する

不等式で言いますと、自然数の場合、N1 に対して N1<N2 となる N2 があって、
さらに N2<N3 となる N3 があって、・・・・と、続いて、
N1<N2<N3<N3<N5<N6<N7<・・・
非常に大きい自然数 10000000 を考えても、10000000 < 10000001 という関係にある別の自然数 10000001 が、必ず存在する、という事です。

尚、あくまで文章表現の問題ですが、大学数学では、「どんな自然数 N を選んでも」という表現を、「任意の自然数Nに対して」と言う事が、よくあります。(このサイトでも使用します。)

自然数や整数の全体には、「最大の数」や「最小の数」が存在しません。いくらでも大きい数、マイナス方向にいくらでも小さい数が存在する「無限集合」です。

自然数や整数の場合、大きさを増やしていくと、いくらでも大きくなる・・つまり「無限大」になるわけです。
ここで、条件として「自然数や整数の場合」と、限定している事には意味があります。じつは、有理数や実数と、少し話は変わるからです。

有理数や実数だと、有限の区間の中などにも、「無限個の数(要素)がある」という事も起こるのです。その事について、説明いたしましょう。理屈は、至って平易です。何も難しくはありません。

有理数と実数の場合の無限の扱い・・有限区間の中の無限個の要素

有理数や実数の「全体」で考えると、正の範囲では無限に大きくなるのは自然数や整数と同じです。
しかし、有理数や実数の場合、Q1<Q2<Q3<Q4<Q5<・・ となって、尚かつ特定の数より必ず小さいという「集合」を、考える事ができるのです。

有理数とは、0.1, 0.2, 1/2, 1/3 などの、いわゆる「『整数の比による』分数で表せる数」です(自然数や整数を含めます)。
実数とは、有理数と \(\sqrt{2},\pi, e\) などを含めたものです。
実数の「異なる2つの」要素には、必ず「大小関係」があります。どちらが大きい・小さいを必ず言えるという事です。
例えば、\(-1 < 0 < 0.1 <\frac{1}{3}<\frac{1}{2}<1<1.4<\sqrt{2}<2<e<3<3.1<\pi<4<・・・ \)などの大小関係があります。

例えば、「0以上1以下」という、ごく限られた範囲の区間を、考えてみてください。この有限の区間の中にも、0.1, 0.2, 0.01, 0.001,・・等の、数えきれない、上限のない「無限個」の要素があるのです。
小数ではなくて分数で考えても同じ事で、1/2, 1/3 といった、「0より大きく1以下」 の分数 \(\frac{1}{n}\) は、無限個存在します。

[0,1] という閉区間(0と1を含む、0以上1以下の区間)の中には、n を自然数として、1/nで表される有理数が無限に多く存在します。それらの個数は無限に多いけれども、0<1/n≦1 という不等式を必ず満たします。大学数学の解析学では、このような時に数列 {1/n} は「有界」であると言います。

自然数が無限個あるので、自然数 n を用いた \(\frac{1}{n}\) も、無限個あるのです。
(※整数の範囲だと、 「0以上1以下」 の区間に属する要素は「0と1」というただ2つの要素だけです。)

Point:有限の中にも「無限」は存在する! 無限は必ずしも有限と根本的に違う世界にあるというわけではなく、むしろ隣り合わせにある事も多いのです。
  • 1つの量や個数の「無限個」への分割
  • 区間や領域の「無限個」の分割

後述しますように、区間や領域の無限個の分割は積分の考え方そのものですし、
幾何級数(等比級数)は、図形的に見ると有限の面積などを無限個に分割して加え合わせたものと見る事もできます。

このとき、\(\frac{1}{n}\) という形に限定した有理数の集合の要素は、nを増やすごとに小さくなっていきます。
つまり、\(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{7}>\cdots\) という大小関係が、無限に続いていきます。しかし、これらは、どれほど小さくしても、「0よりは大きい」ですね。つまり、不等式で書くと次のようになります。 $$\frac{1}{2}>\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{7}>\cdots>0$$ これは、
「2つの異なる要素同士の大小関係」については無限に小さくなっていくけれども、必ず0よりは大きい
という事です。

$$q_1>q_2>q_3>q_4>\cdots という条件も確かに満たしますが、$$ $$同時にq_1>q_2>q_3>q_4>\cdots >0 でもある;「任意の k に対して q_k > q_{k+1} かつ q_k>0 」 $$

そして、このような事は、決して例外ではなく数多くあるという事が、1つの重要ポイントです。有限の実数の範囲の中に無限個の要素が存在するという事は、微積分の積分のほうの考え方に直結するものでもあります。

無限級数の収束と発散

さて、有理数や実数を考える場合、有限の区間の中にも無限個の数が含まれ得ると言う事を、お話しました。それと密接に関係する事として、無限個の項の和である無限級数も、有限の範囲におさまる場合があります。しかも、それは例外的にではなく、無限級数が有限の値になる事は多くあるのです。

無限級数が有限の値に確定する時、その無限級数は「収束」すると言います。
逆に、有限の値に確定しない場合を「発散」すると言います。特に、無限大の値になってしまう場合を「無限大に発散」すると言います。(有限の範囲内にはあるけれども極限値として一定の値に収束せず、「振動」する場合というのもあります。用語の使い方としては、「収束しない場合」の事を「発散」と呼びます。)

数学の理論においても、物理での応用でも、重要なのは「収束する」無限級数です。「発散」してしまうものは扱いにくいか、全く取り扱えないからです。

無限個加え合わせたら 無限大?じつは必ずしもそうではなくて、無限大にはならず、有限の値に収束する場合もあるのです。基本的に、加え合わせる項の値がどんどん小さくなっていくものが該当します。大学数学の解析学では、どのような無限級数が「収束」し、そのような無限級数が「発散」するかの判定の理論が考察されます。
~有限の中の無限~ より身近で具体的な物で考えてみよう

1という有限の数・・現実的に言えば1kgの物とか、1平方メートルの紙、1個の塊のケーキなど・・は、半分個に分割できます。\(\frac{1}{2}\) という数を、考えているという事ですね。
同じように、3分割 \(\frac{1}{3}\)、4分割 \(\frac{1}{4}\) を考える事も当然できるわけですが、
さらに大きい分割として「1万分の1」\(\frac{1}{10000}\) なども考えられます。
(※ケーキを1万分割する事はまずないでしょうが、1立方メートル \(\mathrm{m}^3\) などは1万分の1にすると1立法センチメートル\(\mathrm{cm}^3\) ですので、対象によっては現実離れした考えというわけでもないのです。)
要するに、「〇〇分の1」\(\frac{1}{n}\)という数は、限りなく小さくする事ができるわけです。
このように、少なくとも数学的には「有限の中にも無限がある!」という事は、意外と「それほど不自然な発想ではない」と、言えるかと思います。

収束する無限級数の例

「収束する」タイプの無限級数の例を、いくつか挙げます。

収束する無限級数とは?意外と多くある!

$$自然対数の底 e = 1+1+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\cdots = 2.718・・・$$ $$円周率(ライプニッツ級数) \pi = 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\cdots = 3.141592・・・$$ $$幾何級数(等比級数) 2 = 1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\cdots$$ $$三角関数のマクローリン展開:任意の実数 x に対して \sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots$$ $$そのほかの色々な無限級数の1例: 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\cdots$$

e = 2.718・・・は、無限小数なので小数点は無限に続きますが、値としては確かに有限の実数です。円周率を無限級数で表す公式もあり、しかも1つではなく、多くの種類があります。円周率の値は、もちろん3.14・・で、有限の値です。

このページでも後述しますが、幾何級数やテイラー展開、マクローリン展開なども、「収束」する無限級数の仲間です。(ただし、無制限に収束するわけではなく、収束する条件などがあります。大学数学での解析学の学習ポイントです。)

そのほかにも、\( 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\cdots\) や、\( 1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\cdots\) なども、収束する無限級数です。このように、無限に加え合わせて「有限の値に収束する」ものは、決して例外的なものではなく、数学において意外と広く見られるものなのです。

無限大に発散する無限級数の例

他方で、無限個の項を加え合わせる事によって、普通に無限大に「発散」しまうものも、同じく多くあります。見た感じで明らかに発散するものと、判定が微妙なものがあります。

微妙な例としては「調和級数」と名のついた無限級数\( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots\)があります。
調和(harmonic)などと名前がついていますが、じつはこの無限級数は、無限大に発散します。相当項数を増やさないと大きな値にはならないのですが、じゅうぶん項数を増やすと、確かにいくらでも大きくなってしまい、収束しない事が証明されます。(証明自体はそんなに難しくありません。不等式を使った簡単な計算になります。)

無限大に発散する無限級数の例 $$調和級数:1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}++\frac{1}{5}\cdots$$ $$明らかに無限大になる例:1+2+3+4+5+6+7+\cdots$$ $$見ただけでは分からない微妙な例:\sum_{n=1}^{\infty}\frac{1}{\ln n}$$

無限級数の収束・発散について、特定のタイプのものについては解析学でのいくつかの判定法(コーシーの判定法、ダランベールの判定法)によって、公式のようなものを使って判定する事が可能です。
ただし、それで全ての無限級数の収束・発散を例外なく判定できるわけではありません。そこが、大学数学の解析学の面倒な部分でもあり、考察対象によっては「興味深い」部分でもあるのです。

無限級数には「収束」するものと、「発散」するものがある
  • 項数が無限個ある和の形で表された値、数列、関数の事
  • 無限級数は、値としては(関数などの場合は1つ1つの値について)次の2つの場合がある:
    1. 有限の範囲に収まる(「収束する」)場合
    2. 収束せず「発散する」場合
      特に無限大になる場合、マイナス無限大も含めて「無限大に発散する」と言う
    → どちらになるか、判定の方法が理論的にも応用的にも重要

参考:微分と積分も「無限」の数学・・物理でも無限級数を使う理由

微分係数は、関数を曲線と考えた時の「接線」ですが、非常に小さい区間の2点を結んだ傾きと考える事もできます。(その極限値が接線です。)
無限級数が関わるのは積分のほうがより明確で、積分とはそもそも無限個の長方形(ただし細長くて面積の小さい)の和でした。これは、無限級数であることに他なりません。

$$微分は「無限に小さい区間」の関数の変化率:\frac{df(x)}{dx}=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$$ $$積分は「無限大に多く分割した」面積の和:\int_a^bf(x)dx=\lim_{|\Delta| \to 0}\sum_{j=1}^{\infty}|\Delta x_j| f(k_j)$$

また、微積分学の基本定理により、微分可能な関数は、「微分して得られた導関数」を積分したものと解釈する事もできます。その意味では、微分の積分=無限級数として通常の関数を表現できる、とも言えるのです。
微分や積分は、物理に置いて非常に重要です。そして、微分や積分が無限級数に大きく関わるので、物理などへの応用にも無限級数は大いに関わるのです。
後述しますが、マクローリン展開は微分を利用した無限級数であり、フーリエ級数展開は、逆に積分を利用した無限級数展開です。
物理などでは、一度無限級数の形にしてから、高次の項をゼロに近似できるような範囲に絞って考え、実質的に有限の範囲で考えれるように工夫をする、という事もあります。これは、微分も積分も近似的には有限の範囲で数値計算的に扱う事が可能という事とも、大きく関わります。
そのような点にも注意してみてください。

積分も、意味としては無限級数のひとつです。

大学数学や物理を学んでいると、多分、唐突に「 f(x) を展開すると、・・」といった表現が使われるのを目にする事があると思います。これは、因数分解の逆の操作の「展開」の場合もありますが、割と多くの場合は「無限級数展開」を指しています。関数を「無限級数の形で表せますよ」という意味です。

具体的には、幾何級数(等比級数)展開、テイラー展開およびマクローリン展開、フーリエ級数展開などが無限級数展開の代表的なものです。

無限級数を扱う分野では微分を使って話を進める事も多いので分野としては微積分や解析学に含めて考える事が多いです。

無限級数展開にはテイラー展開(その特別な場合がマクローリン展開)、幾何級数展開、フーリエ級数展開などがあります。

極限値としての円周率の存在証明

円周率が極限値として存在する事は、同一円に対する内接正n角形と外接正n角形の周の長さのn→∞の時の極限値が存在する(両者は一致する)事によって証明します。

結論を言うと、証明の流れと発想自体は難しくないのですが、結構の計算などが一部結構面倒です。しかし省略せずに書いてるので適宜参照してください。

証明のステップ  ■ \(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) がともに存在する ■ \(\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n\) を示す 
3以上のどの自然数から始めても\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) は同じ値に収束する 

より初歩的な流れと考え方は「円周率はなぜ3.14なの?」に動画付きで書いています。

動画声優担当ステ♪様 http://sute.tabigeinin.com/

★この動画では円周率の値が3.14……である事のおおまかな流れを初歩的な部分から解説しています。

証明のステップ

これは少々手間がかかりますが、詳しく述べておきます。まず、次のように設定をします。

  • 内接正n角形の周の長さ:\(L_n\)
  • 外接正n角形の周の長さ:\(R_n\) 
  • 円の半径:1とする(一般のrでやっても同じ結果になります。)

$$L_nの2n等分: \frac{L_n}{2n}=a_n \hspace{15pt} R_nの2n等分: \frac{R_n}{2n}=A_n $$

そのうえで、次の手順により証明を行います。

  1. 任意の3以上の自然数に対して \(L_n<L_{2n}<R_{2n}<R_n\) を示す。
    これは\(L_nとR_n\)が有界な単調数列である事、
    つまり\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) がともに存在する事を示す事になります。
    式で示してもよいし、図形的にも示せます。
  2. \(\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n\) を示す。
    これは、図形的考察から\(L_nとR_n\)に関する次の2公式(アルキメデスの公式とも)により示します。 $$R_{2n}=\large{\frac{2L_nR_n}{L_n+R_n}}$$ $$L_{2n}=\sqrt{L_nR_{2n}}$$
  3. 3以上のどの自然数から始めても\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) は同じ値に収束する事を示す。
    これは、n、2n、4n・・という形の数列であるために補足的に示すもので、通常のn=1,2,3,・・の形の数列であれば必要のない考察です。
    図形的考察から、2以上の任意の自然数mに対して \(L_n<L_{mn}およびR_{mn}<R_n\) である事を示し、それにより証明します。

① \(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) がともに存在する

これは、次のステップで見るアルキメデスの公式を用いてもよいのですが、
図形的に三角不等式でも示せますから、まず図を見てみましょう。
上記でも触れましたようにnに対して2nを考える事で作図と計算が容易になります。
これに対して、nの次にn+1を考えると作図が非常に難しく、関係も複雑になってしまい非常に計算しにくくなってしまうのです。

この方法で作図した時、内接のほうに関しては、正n角形と正2n角形とで共有する点はありますが共有する辺はありません。
他方、外接のほうは、 正n角形と正2n角形とで 共有する点はありませんが部分的に共有する辺があります。

図を見ると(正6角形と正12角形の例ですが)、内接のほうは、正2n角形の2辺と正n角形の1辺からなる三角形に着目します。すると三角不等式によって\(L_n<L_{2n}\) が直ちに示されます。

外接のほうは、少し込み入るのですが、まず、図では次のように作図しています。

  1. 内接正n角形と内接正2n角形を、図の左側のように作図しておく
  2. 内接正n角形(正2n角形でもOK)の頂点での円の接線を引く。
  3. 接線同士をつなぎあわせてると、外接正n角形になる。
  4. 外接正n角形の各頂点から円の中心に向かって直線を引き、円との交点での接線を引く。
  5. 手順2と手順4で引いた接線を全て結び合わせると、 外接正2n角形になる。

この時、外接正n角形と外接正2n角形は共有する辺を持ちますが、共有しない部分もあります。その共有しない部分について三角不等式を適用すると、外接正2n角形の周の長さは、必ず外接正n角形の周の長さより小さい事になります。
よって、\(R_{2n}<R_n\) が示されます。

さらに、外接のほうの作図方法をよく見ると、内接正n角形の周の長さは外接正2n角形の周の長さよりも必ず短い事が分かります。(図形的に正確に言うと、相似な三角形の対応する辺同士になるので。)
よって、\(L_{n}<R_n\) です。
これは、任意の3以上の自然数で成立しますから、\(L_{2n}<R_{2n}\) でもあります。
すると、\(L_n<L_{2n}\) かつ \(L_{2n}<R_ {2n} \) より、\(L_n<L_{2n}<R_{2n}\) であり、
さらに \(R_{2n}<R_n\) でもあるのですから \(L_n<L_{2n}<R_{2n}<R_n\) が示されます。

よって、(解析学の基礎的な定理の証明は必要ですが、)次の事が示された事になります:

  • \(L_n\) は 単調増加数列で上に有界であり\(\lim_{n_\to \infty}L_n\) は収束し、従って存在する。
  • \(R_n\) は 単調減少数列で上に有界であり\(\lim_{n_\to \infty}R_n\) は収束し、従って存在する。

② \(\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n\) を示す。

さて、このようにして \(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) が収束する事が示されましたが、これだけだとじつは「同じ値に収束する」かは、分かりません。
別々の値に収束する可能性も否定できないのです。もしも、別々の値に収束するとすれば、一体どちらを正式な円周として採用すべきか、理論がぐちゃぐちゃになってしまいますね。
しかし実際は、両者は同じ値です。それを示します。

これを示すには、多少の手間はかかりますが \(L_nとR_n\)の関係を、図形的考察から強引に導出する方法が確実です。証明の中ではここが一番面倒くさいかもしれませんが、必要なのは平面幾何の基本知識だけです。

周の長さの2n等分\(\frac{L_n}{2n}=a_n と \frac{R_n}{2n}=A_n\) は、ここで使います。
また、導出のポイントとして重要なのが、
「内接正n角形の隣り合う2点の中点と円の中心との距離」で、これを\(p_n\) とします。
図で言うと\(OP=p_n,\hspace{5pt}OH_1=p_{2n}\) です。

まず最初のステップとして、次の2式が得られます。三平方の定理から

  • 内接正多角形で作られる三角形の相似から\(\frac{A_n}{a_n}=\frac{1}{p_n}\Leftrightarrow A_n=\frac{a_n}{p_n}\)
    また、これにより(または同様の考察により) \(A_{2n}=\frac{a_{2n}}{p_{2n}}\)
  • 単純に三平方の定理により、\(a_n^2+p_n^2=1^2 \Leftrightarrow p_n^2=1-a_n^2\)

次のステップとして、図の三角形OABに着目した2式を得る事を考えます。片方は、同一面積を2つの辺と高さで表して得る式です。もう片方は、少々トリッキーですが図の\(OH_2\)の長さを2通りの方法で表す事によって得ます。

  • 同一三角形の面積を2通りの方法で表す事により、\(a_{2n}p_{2n}=a_n\)
  • \(H_1 が AB の中点、H_3がBH_2 の中点\) である事により\(OH_3=p_n+\frac{1-p_n}{2}=\frac{1+p_n}{2}\)、
    三角形の相似により \(OH_3=p_n^2\) となるので\(p_n^2=\frac{1+p_n}{2}\)\(\)

以上の式をまとめると、

  • \(A_n=\frac{a_n}{p_n}\hspace{10pt}A_{2n}=\frac{a_{2n}}{p_{2n}}\hspace{10pt}p_n^2=1-a_n^2\)
  • \(a_{2n}p_{2n}=a_n\hspace{10pt}p_n^2=\frac{1+p_n}{2}\)

これらを組み合わせると次の関係式が得られます。ちょっとだけ、計算の工夫は必要です。

$$A_{2n}=\frac{a_{2n}}{p_{2n}}=\frac{ a_{2n} p_{2n} }{ p_{2n} ^2}= =\frac{ 2a_{2n} p_{2n} }{ 1+p_{n} }=\frac{a_n}{ 1+p_{n} } = \frac{A_np_n}{ 1+p_{n} } =\frac{a_n}{A_n}\frac{A_n}{1+\frac{a_n}{A_n}}=\frac{a_nA_n}{a_n+A_n} $$

$$また、4a_{2n}^2=4\frac{a_n^2}{4p_{2n}^2}=\frac{2a_n^2}{1+p_n}=2a_n\frac{A_np_n}{1+p_n}=2a_nA_{2n} ∴ 2a_{2n}=\sqrt{2 a_nA_{2n} }$$

まとめると、次の2式になります。

$$ A_{2n}= \frac{a_nA_n}{a_n+A_n} \hspace{10pt} 2a_{2n}=\sqrt{2 a_nA_{2n} } $$

ここで、\(L_n=2na_n,R_n=2nA_n\) でしたから、整理すると次のように、目的の公式が得られます。

$$ L_{2n}= \frac{2L_nR_n}{L_n+R_n} \hspace{10pt} L_{2n}=\sqrt{ L_nR_{2n} } $$

これらのうちどちらを用いてもよいのですが、平方根のほうを使ってみましょう。
\(\lim_{n_\to \infty}L_n=\alpha,\hspace{5pt}\lim_{n_\to \infty}R_n=\beta\) とします。(収束する事は示しているので、このようにおいてよいわけです。)

$$すると、\alpha=\sqrt{\alpha \beta} ですから、\alpha^2= \alpha \beta \Leftrightarrow \alpha(\alpha – \beta)=0 $$

$$\alpha>0 ですから、\alpha=\beta ∴\lim_{n_\to \infty}L_n=\lim_{n_\to \infty}R_n$$

④ 3以上のどの自然数から始めても\(\lim_{n_\to \infty}L_nと\lim_{n_\to \infty}R_n\) は同じ値に収束する

さて、これでもう「証明終り。円周率は2つの数列の同じ極限値として確かに存在する」・・でも構わないのですが(一般にはそうしてます)、もう少し考察をしてみましょう。上記で示したのは、例えば正6角形から始めて、12,24,48,96・・とした場合に極限値が確かに存在し、正5角形から始めた場合は10,20,40,80,・・とした場合に、やはり確かに極限値が存在するという事です。

では、それらは確かに一致するでしょうか?

上記の証明ではnに対して2nを考えましたが、
じつはこれはnに対して3nでも4nを考えてもよいのです。

外接のほうは、2倍の角数を考えた時と同じく、内接正多角形を基準にして作図を考えると多少分かり易いです。

実際は任意の自然数mを使ってnに対する内接・外接正(mn)角形を用いる事で、上記同様の極限値の存在の証明ができます。(内接・外接ごとの極限値の存在まででじゅうぶんです。)

図形的に考えてみて、三角不等式の組み合わせか、適切に区切って傾きによる線分の長さを比較します。
それによって、\(L_n<L_{mn}<R_{mn}<R_n \) となる事が分かります。
つまり、上記では\(L_n<L_{2n}<R_{2n}<R_n \) を証明したわけですが、
同様に \(L_n<L_{3n}<R_{3n}<R_n \), \(L_n<L_{4n}<R_{4n}<R_n \),・・も成立するという事です。

さて、すると、例えば5と7で始めた場合で、5からの場合は7倍の角数、7の場合は5倍の角数を考えてみましょう。
それぞれ\(L_5,L_{35},L_{245},\cdots\) \(L_7,L_{35},L_{165},\cdots\) のような数列になります。
ここで、\(L_{35}\) から始めた場合も同様に収束するわけで、c に収束するとします。

ここで、\(\lim_{n\to \infty}L_{35n}=c\) とは、cを中心としたどんな小さい開区間にも、あるn以上の値の\(L_{35n}\) は全て含まれる事を意味します。【極限値は、解析学的にはそのように定義します。】
ここでそのようなあるn以上の、35 の倍数の中には、\(L_{5}やL_{7}\) から始まったものも含まれています。これらの数列が全て単調増加数列である事に注意すると、結局、そのあるn以上の値では、\(L_{5n},L_{7n},L_{35n}\) は全てcを中心とした同じ開区間内に含まれる事になります。これは、これらが同じ極限値 c を持つ事を意味します。

つまり、どんな(3以上の)自然数 n,m から始まろうとも、極限値は nm で始めた時と同じであるわけです。さらに別の自然数 N から始まるものを考えても nmN から始めた時と同じ値に収束するわけですから、結局どの番号から始めても、内接、外接の場合ともそれぞれ同じ値に収束する事を意味します。

また、同じ自然数から始まって倍にする数を変えたとしても、同じ考え方によって同じ値に収束する事になります。今、2倍にしていく場合は、内接と外接とで極限値が一致する事は証明済です。

これによって、内接正多角形と外接正多角形は n→∞ にした時に、確かに1つの極限値に収束すると言えます。これは、半径1の円に対して言えたわけですが、半径がrの場合は、三角形の相似により、周の長さはr倍になりますから極限値は半径が1の時の円周のr倍になります。 ですので、半径1の円の円周の長さを何かの定数の記号でおくのです。
結論を言うとこの定数を\(2\pi\) とおき、半径1つまり直径が2の円の円周の長さは\(2\pi\)であるとします。半径がrの場合は\(2\pi r\) となり、これは直径と円周率の積と言う事もできるわけです。

★ 3.14という値は?

上記の極限値としての円周率の存在証明では、円周率の値が具体的にいくらかという話が全く出てきていません。

しかし、このページの最初の概要で触れましたように、具体的な内接正n角形の周の長さについて、n=6の場合はぴったり「直径×3」、n=12の場合は「直径×約3.1058」となり、内接の場合はn=96(外接の場合はn=48)で3.14までの値は確定します。 【手計算でやる場合は、具体的な三角関数の値を半角の公式・マクローリン展開等で出すか表を見るなどして計算します。値が細かいので、結構面倒です。】

3.14以降の円周率の小数点の計算は、具体的に周の長さを計算する方法だとかなり大変なので、果てしなく小数点を出すような場合は何らかの「円周率を直接記述する公式」(基本的に無限級数)を用いて、しかもコンピューターに計算をやらせる事になります。

それらの「公式」は、円の面積を使う場合や、三角関数や逆三角関数(の微積分)をもとに作られている事が多いです。公式の種類によって、小数点計算が速い・遅いなどの特徴があります。マチン型の公式と呼ばれるものは計算が速く、逆にライプニッツ級数は収束が遅くて小数点計算には不向きです。

最も簡単な微分方程式5つ

大学の微積分学の入門として、簡単に解ける微分方程式について説明します。

微分方程式の解き方の手短な説明

微分方程式とはその通り、微分(および高階微分)を含んだ方程式ですが、要はその方程式を満たす「関数」を探す事が、その方程式を解くという事です。このページで紹介する微分方程式は、パズル感覚で色々組み合わせるだけで解けます。

声優担当:ステ♪様 http://sute.tabigeinin.com/

つまり、微分の公式を微分方程式に当てはめてみて、確かに解になっていればよいわけです。微分の公式と言ってもたくさんあるわけですが、今回用いるのは6つで、三角関数に関しては正弦か余弦のどちらか片方あれば足りるので、実質「5つ」だけの公式を用います。それらは次の表にまとめてあります。これらを単独で使うか上手に組み合わせるかして、微分方程式を解いていけるのです。

合成関数も利用しながら、初等関数の「パーツ」を組み合わせ、具体的な微分方程式に当てはめてみます。このタイプの解法は、高校で教わる微分の知識を直接使えます。「2回微分すると〇○になる関数はどれですか」といった事について、公式の中から探して、組み合わせればよいのです。

使う公式は、この場で表にして記しておきましょう。

対象の関数微分公式微分方程式の解法での役割
①定数(定数関数)\({\large \frac{d}{dx}c=0}\)微分すると0になる
②単項式「x の a 乗」\({\large \frac{d}{dx}x^a=ax^{a-1}}\)微分するとx の指数が1下がる
③自然対数の底 e の指数関数\({\large \frac{d}{dx}e^x=e^x}\)微分すると元の関数に戻る
④-1 三角関数(正弦関数)\({\large \frac{d}{dx}\sin x=\cos x}\)微分2回で元の関数の符号±入替
④-2 三角関数(余弦関数)\({\large \frac{d}{dx}\cos x=-\sin x}\)微分2回で元の関数の符号±入替
⑤合成関数の微分\({\large \frac{df(y)}{dx}=\frac{df(y)}{dy}\frac{dy(x)}{dx}}\)微分方程式内の定数倍などを調整
基本は、通常の微分の公式を用いて、当てはまる関数を見つけるだけです。微分方程式特有の考え方としては、「全ての」解を表現するという意味では「微分すると0になって消える定数項」などがオマケとして解にくっついてくる事です。(最初のうちはあまりこだわらなくていいと思います。)
微分方程式論の中の位置付け

このページでは「具体的な微分公式を探して当てはめてみる」という見方をしますが、このやり方は、じつは「微分の逆演算つまり積分を行い『微分記号を消去する』事で、解となる関数を見つける」・・という見方と同等なのです。そのため、微分方程式論の枠組みの中では「求積法」と呼ばれます。

少し発展事項
~微分方程式の「解」は、基本的に1つではなく「複数」ある~

具体的な関数を微分方程式に当てはめてみて、それで確かに式が成り立てば、その関数は間違いなく「解」の1つです。他方で、数学的に少し面倒で時に厳密な論証が必要なのは、
「それで『全ての解』を表現できているか??」という点にあります。その事も念頭に置きながら、具体例を通して少しずつ理解していくと学習しやすいかと思います。

では具体的な微分方程式を見てみましょう。とても簡単に、解けます。

①一番簡単な微分方程式「1階微分=0」f ‘(x)=0

最初に見るのは、「1階微分(通常微分)がゼロになる」という微分方程式です。これは、即刻解けます。しかも、運動方程式において物理的な意味も持ちます。

①一番簡単なタイプの微分方程式

$$ \frac{d}{dx}f(x)=0$$ 「微分すると0になる」関数はなんだろう、という方程式です。 $$解: 定数関数\hspace{5pt}f(x)=C \hspace{10pt}(C:定数)$$

当てはまるような公式を探してみますと、

対象の関数微分公式微分方程式の解法での役割
①定数(定数関数)\({\large \frac{d}{dx}c=0}\)微分すると0になる

と、いうものがありますね。
定数は微分するとゼロですから、そのまま当てはまります。これで「解けた」という事になります。

1つだけ注意していただきたいのは、0や1や2などの「特定の定数」だけではなく、定数であればどんなものでもよいという事です。その事を表現するために、「任意の定数」という表現を用います。この表現は、他のタイプの微分方程式の解でも用います。
【f(0) = 1 などの具体的な x の値での関数値が条件としてあるなら、解は f(x) = 1 というただ1つの関数に定まります。そのような条件は「初期値条件」と呼ばれ、微分方程式論全体で重要です。】

物理の力学での運動方程式ではこのタイプの微分方程式は慣性の法則のうち等速運動である事を表現します。

② 2階微分=ゼロ f ”(x)=0 1次関数 

2階微分が0になるという微分方程式も、簡単に解けるタイプのものです。高階の微分が入っていると一見難しく見えるかもしれませんが、これもじつは非常に簡単なのです。
物理的には、力が働いていない物体は等速「直線」運動する事に関わります。

「2階微分=0」という微分方程式

$$ \frac{d^2}{dx^2}f(x)=0$$ 「『2回』微分すると0になる」関数はなんだろう?という方程式です。 $$解: 1次関数\hspace{5pt}f(x)=bx+c\hspace{10pt}(b,c:定数)$$

2階微分が入っているので、一見、どうすればよいのか迷うかもしれません。

しかし、要するに2回微分すると0ですから・・
1回だけの微分は『定数』」であるはず??・・という事に気付くと、解けます。
つまり「1回の微分で定数になる関数(もう1回微分で0)」→ 1次関数が解 というわけです。
使う公式としては、「1階微分=0」の時と同じ公式の組み合わせという事に、なります。

対象の関数微分公式微分方程式の解法での役割
①定数(定数関数)\({\large \frac{d}{dx}c=0}\)微分すると0になる
②単項式「x の a 乗」\({\large \frac{d}{dx}x^a=ax^{a-1}}\)
\({\large \frac{d}{dx}x=1\cdot x^{0}=1}\)
微分するとx の指数が1下がる
「x の 0 乗」は定数

実際に、解となるはずである1次関数を「2回」微分してみましょう。

  1. 微分1回目:\(\frac{d}{dx}(bx+c)=b\)(定数)
  2. 微分2回目:\(\frac{d}{dx}b=0\)(ゼロ)→ OK
  3. 合わせると:\(\frac{d^2}{dx^2}(bx+c)=0\hspace{10pt}\rightarrow \frac{d^2}{dx^2}f(x)=0\hspace{5pt}の解\)

というわけで、確かに1次関数 bx + c は、2階微分=0という微分方程式の解です。
尚、定数関数も何回微分してもゼロになるので解ですが、これは1次関数で b = 0 の場合と見なせるので、任意定数 b の値に制限を設けなければ1次関数に含める事ができます。

この解の導出過程では、「1階微分=(ゼロ以外の)定数」というタイプの微分方程式の解も、合わせて見つけている事になります。また、同じ論法を使うと、3階微分=0、4階微分=0といった微分方程式の解も同様に考える事が可能というわけです。
$$\frac{d^3}{dx^3}f(x)=0 の解は「2次関数」$$

$$\frac{d^n}{dx^n}f(x)=0 の解は「(n-1)次関数」$$といった感じになるのです。

それでは次に、物理的には放物運動(2次関数のグラフの形)を表す微分方程式を見てみましょう。これについては高校の物理でも多分扱われていると思いますが、微分方程式の観点から考察してみましょう。

③ \(y^{\prime\prime}-b=0\)・・2次関数

「2階微分が定数に等しい」という微分方程式です。(もちろん\(y^{\prime\prime}=b\)と書いても同じです。b = 0 の場合は2階微分=0のタイプですから、b≠0 と考えてください。)
物理的には運動方程式において地上で物を投げた時の運動としての意味があり、放物軌道の運動を表します。

数学的な解法 ■ 物理的な意味・・地上での水平投射の重力による運動(放物運動)

解法:1回微分すると1次関数→2回微分すると定数 と考えよう

「2階微分=もとの関数」という微分方程式

$$ \frac{d^2}{dx^2}f(x)-b=0$$ 「『2回』微分すると定数になる」関数はなんだろう?という方程式です。 $$解: 2次関数\hspace{5pt}f(x)=\frac{b}{2}x^2+Ax+C\hspace{10pt}(A,C:定数、b は微分方程式内で使われてる係数)$$

この3つ目のタイプの微分方程式の場合、2回微分すると定数・・という事ですから、「1回微分すると1次関数」を見つければよいのです。

対象の関数微分公式微分方程式の解法での役割
①定数(定数関数)\({\large \frac{d}{dx}c=0}\)微分すると0になる
②単項式「x の a 乗」\({\large \frac{d}{dx}x^a=ax^{a-1}}\)
\({\large \frac{d}{dx}x=1\cdot x^{0}=1}\) \({\large \frac{d}{dx}x^2=2x}\)
微分するとx の指数が1下がる
「x の 0 乗」は定数

単項式の微分公式を見ると、1回微分するごとに指数(xの「〇乗」の〇)が1下がりますから、2次関数を1回微分すると1次関数になりますね。

ですから、解となる関数は「2次関数」です。
最後に定数 b が残ってほしいのと、係数調整のために、
\(\frac{b}{2}x^2+Ax+C\)のような形のものを選びます。2次関数の中の Ax + C の部分は、2回の微分操作の過程で0になって消えてしまうので、A と C は任意定数という形になります。
2次式を微分するために\(\frac{1}{2}\)というオマケがくっつく事に注意する必要がある事を除けば、これも難しくないのではないと思います。

実際に微分して確かめてみよう

実際に微分をしてみて、確かめてみましょう。

  1. 微分1回目:
    \(\frac{d}{dx}\left(\frac{b}{2}x^2+Ax+C\right)=2\cdot \frac{b}{2}x+A=bx+A\) (1次関数)
  2. 微分2回目:
    \(\frac{d}{dx}(bx+A)=b\)(定数で、しかも b に一致)→ OK
  3. 合わせると:
    \(\frac{d^2}{dx^2}\left(\frac{b}{2}x^2+Ax+C\right)=b\hspace{10pt}\rightarrow 2次関数\frac{b}{2}x^2+Ax+C は、確かに\frac{d^2}{dx^2}f(x)-b=0\hspace{5pt}の解\)

物理的には、運動方程式においては「地上で物を投げた時」の運動を表します。座標同士の関係を表す軌道が2次関数の関係式になるので、放物線を描きます。

物理的意味:地上での水平投射 重力だけが働く場合は放物運動

ここでは、運動方程式で働く力が「重力」であるとします。これは、地球上では物体の質量が定まれば一意的に決まり、その大きさは mg (≒9.8m) である事が知られています。この時、水平に物を投げる(「投射する」)と、軌道は2次関数のグラフである放物線になる事を見ましょう。

■ ①考え方・・水平方向と垂直方向に分ける ■ ②設定をして、2方向の2本の運動方程式を作ろう
■ ③運動方程式の解から軌道の関係式を作ると、2次関数つまり「放物線」が得られる

① 考え方・・水平方向と垂直方向に力の働き方を分ける

水平に物を投げる(投射する)運動を考えます。投げた瞬間には力が働いているかもしれませんが、一旦手などを離れたら、水平方向には力は働かず、地面に向かう方向にのみ重力が働くと考えて数式を組み合わせるのです。

  • 地面に対して水平(平行)な向き:力は働かない
      → 等速で運動(射影して見れば直線運動でもある)
  • 地面に対して垂直(直角)な向き:重力 mg [N] が地面に向かう向きで働く
      → どういう挙動をするか?(運動方程式を立てて解くと「時間の2次関数」になる)

上記の「2階微分=0」の微分方程式の物理的意味の項目で、平面や空間の運動で運動方程式を考える場合は、力を分解して「座標成分ごとに運動方程式を立てる」という事を述べました。ここでも、同じ考え方をします。

この場合は、3次元で考えてもよいのですが、最初に物を放り投げた方向に向かって上手に1つの座標軸を合わせたと考えると、すなわち平面で考えても全く同じ運動を表せます。

空気抵抗力などがなく、ひたすら地面に向かって同じ大きさの重力 -mg が働くと仮定します。こういうボールみたいなものを投げる時、力学的には、「『回転』もないものとする」という仮定も、一応重要です。

(※働く力が重力だけであると想定するので、「水平方向には力は働かない」=「水平方向だけで見れば等速直線運動」という事が保障されるので、そのように考えてよいわけです。「直線」という事については、地面の真上から見れば「直線」になっているという事です。このような見方を「射影(しゃえい)」と言います。)

② 設定をして、2方向の2本の運動方程式を作る

このようにして考える時、どちら向きがプラスでどちら向きがマイナスかも含めて、座標軸の向きの設定を行ってから運動方程式を立てます。今、運動は平面で考える事にして、座標軸は x 軸と y 軸であるとします。

座標軸の設定
  • x 軸:地面に対し水平方向、物体が投射される平面内、進行方向が+プラス
  • y軸:地面に対して垂直、地面から空の向きが+プラス、空から地面への向きが-マイナス

そして、2本の運動方程式を立てましょう。※尚、この場合に仮に3本目を立てたとしても、その向きには働く力はゼロ、位置もゼロから動かないので 0 = 0 という式ができるだけです。

  1. x 軸成分: \(0=m\frac{d^2x(t)}{dt^2}\) → 「2階微分=0」なので、解は t の1次関数ですね
  2. y軸成分:\(-mg=m\frac{d^2y(t)}{dt^2}\hspace{5pt}\Leftrightarrow \hspace{5pt}-g=\frac{d^2y(t)}{dt^2} \) → 「2階微分=定数」の微分方程式で、
    解は t の2次関数というわけです。
    この場合、質量 m は上手い具合に両辺に入っているので、両辺で割って消せます。

y 軸成分の運動方程式で「力」の部分を – mg としているのは、空 → 地面方向は「マイナス」向きと設定したためです。地面方向に向かう「重力」の符号もマイナスにするのです。
(※では、もし「地面向き方向をプラスに設定したら + mg にするのか?」と言うと、その通りです。その場合は \(mg=m\frac{d^2y(t)}{dt^2} \)になります。符号が変わっても、解が2次関数という事自体は変わりません。)

② 運動方程式の解から軌道の関係式を作ると、2次関数つまり「放物線」が得られる

という事は、$$x(t)=bt+c,\hspace{5pt}y(t)=-\frac{g}{2}t^2+Bt+C $$という形の2式が、微分方程式である運動方程式の解として、出てくるわけです。
x(t) のほうが1次式ですから、これを t = ・・の形にして y(t) のほうの t に代入すると、$$y(x) = -Ax^2+Px+Q \hspace{5pt}(A > 0)$$ という、x に関する2次関数の形になる事が分かります。

これで、軌道が確かに「放物線」である事が表現されたわけですが、座標軸の正負の向きの設定などから、上記の各定数について b > 0 、A > 0 となるので、最後の結果で \(-Ax^2\)(例えば \(– 2x^2\))という形が出てくるという事は、きちんと「下に落ちていく」という事も表しています。
このような時に結果を考察すると何だか変な事になる場合は、符号の設定などを間違えているかの可能性があるわけです。

さて次は、三角関数が解になるタイプの微分方程式です。じつは、これは物理の力学で言うと「ばねの運動」なので、空間でも平面でもなく、「一次元(直線運動)」と考えてよいパターンです。ですから運動方程式は1つだけ作ればよいので、意外と考察しやすいかもしれません。

④ \(y^{\prime\prime}+b^2y=0\)・・調和振動(単振動)

このタイプの微分方程式は、2階微分と「元の関数」が入っていて、定数倍の関係にあるというものです。三角関数が関係し、物理的には抵抗力などが無い場合の「ばねの運動」(調和振動、単振動とも言います)を表します。
※\(b^2\) という「2乗」の形は、これ自体は「正の数」である事を言っています。
\(y^{\prime\prime}=-b^2y\) つまり「2階微分」=「負の定数」×「もとの関数」という事です。

数学的解法 ■ 物理的な意味:ばねの運動は三角関数(調和振動、単振動)

数学的解法:まず「2回微分すると元の関数の定数倍」になる関数は?

「2階微分=もとの関数の正の定数倍」という微分方程式

$$ \frac{d^2}{dx^2}f(x)+b^2f(x)=0$$ 「『2回』微分すると『もとの関数の負の定数倍』になる」関数はなんだろう?という方程式です。 $$解: 三角関数\hspace{5pt}f(x)=A\cos (bx+C)\hspace{10pt}(A,C:定数、b は微分方程式内で使われてる係数)$$

「2回微分するともとの関数の『マイナスの定数倍』」というものは、微分公式にあるでしょうか?三角関数は、これに似ています。実際、これをパーツとして使えるのです。この時、正弦でも余弦でも同じ事なので、ここでは余弦 cos x を、使います。

対象の関数微分公式微分方程式の解法での役割
④-1 三角関数(正弦関数)\({\large \frac{d}{dx}\sin x=\cos x}\)微分2回で元の関数の符号±入替
④-2 三角関数(余弦関数)\({\large \frac{d}{dx}\cos x=-\sin x}\)微分2回で元の関数の符号±入替
⑤合成関数の微分\({\large \frac{df(y)}{dx}=\frac{df(y)}{dy}\frac{dy(x)}{dx}}\)微分方程式内の定数倍などを調整

三角関数を2回微分すると、もとの関数の「マイナス倍」になります。
他方、解きたい微分方程式は、「『マイナスの定数』倍」となっています。
すると、符号はよいとして、微分した時だけ「定数倍」を新たに出すにはどうすればいいでしょう?

そのためには、じつは合成関数の微分公式を考えればよいのです。この考え方は、このページで紹介するタイプ以外の微分方程式でも有効な手段です。

例えば cos(2x) の微分を1階と2階について見ますと、$$1階微分:\frac{d}{dx}\cos (2x)=(2x)^{\prime}(-\sin (2x))=-2\sin (2x)$$ $$2階微分:\frac{d^2}{dx^2}\cos (2x)=\frac{d}{dx}(-2\sin (2x))=-4\cos (2x)$$ になります。y = 2x , cos(2x) = cos y と考える事ができるので、合成関数の微分公式が適用できるのです。係数として「2」というのが掛けられていますが、それが合成関数の微分由来で出てくる係数というわけです。

・・すると、この cos (2x) という関数は、2回微分するともとの関数 cos (2x) の – 4 倍になっているので、 「2回微分するともとの関数の『マイナスの定数倍』」 の条件を満たす関数の仲間である事が分かります。

という事は、定数倍として\(-b^2\)がほしいのであれば、
cos (bx) という関数を考えれば、2回微分すると合成関数の微分公式が2回適用されるので、\(-b^2\cos (bx)\)が得られます。これが解という事になりそうですね!

任意定数については、まず A を任意定数として、A cos(bx) という形でも解として成立するのです。また、別の任意定数 C を用いて Acos(bx+C) という形でも、じつはOKなのです。これは、合成関数の微分を行う時に、bx + C を x で微分すると b は生き残りますが C はゼロになって消えるためです。

実際に微分して確かめてみよう!

つまり、総合すると Acos (bx+C) という関数が、解になるという事です。正弦で考えても同様の形になります。実際に微分してみて、確かめてみましょう。

  1. 微分1回目:\(\frac{d}{dx}A\cos (bx+C)=-bA\sin(bx+C)\)(マイナスの正弦)
  2. 微分2回目:\(\frac{d}{dx}\{-bA\sin(bx+C)\}=-b^2A\cos (bx+C)\)
    (もとの関数の「マイナスbの2乗」倍)→ OK
  3. 合わせると:
    \(\frac{d^2}{dx^2}A\cos (bx+C)=-b^2A\cos (bx+C)\hspace{5pt}\Leftrightarrow\hspace{5pt}\frac{d^2}{dx^2}A\cos (bx+C)+b^2A\cos (bx+C)=0\)
    \(\rightarrow A\cos (bx+C)は、確かに\frac{d^2}{dx^2}f(x)+b^2f(x)=0\hspace{5pt}の解\)

物理的には、運動方程式を考えると、このタイプの微分方程式は「ばねの運動」を表します。ばねというと、いかにも人工的な響きがありますが、別に工学だけで用いるというものでもありません。例えば、ミクロの領域での分子の振動などを、ばねと同じタイプの振動(調和振動)と考えるモデルをもとにして考察する事が、量子力学や量子化学でもなされるのです。

物理的意味:ばねの運動は三角関数(調和振動、単振動)

運動方程式で、ばねにつながれた物体の運動を考えると、上記の「2階微分=負の定数×もとの関数」という微分方程式になります。ばねは、抵抗力が働かないなら伸びたり縮んだりを繰り返しますから、周期関数である三角関数が解であるという事はその事実と調和しているというわけです。

■ ①まずは設定をしよう・・一次元の運動として扱えます ■ ②解いてみて完成・・結果は三角関数です
① まずは設定をしよう

抵抗力がない状態で、ばねの伸び縮みの力だけで、ばねにつながれた物体が(振動)運動しているとします。この場合は、1次元の直線運動と考えてよいので、運動方程式を3つ・2つ立てる必要はなく、1つでよいのです。ですから、式さえ立てれば、結構分かりやすいと思います。

ばねの力の大きさは、ばねの「伸び」または「縮み」に比例します。(「フックの法則」と言います。)
これはつまり、ばねの平衡点(伸び縮みのない自然な状態のばねの先端の位置)から見て「位置座標」に比例するという力であるわけです。時間を変数とした場合、これは「もとの関数 x(t) 」に比例する力、というわけです。
比例するという事は比例定数もあって、「kx」という形の力が働くというわけです。この k を「ばね定数」という、そのまんまの名称で呼びます。(※物としてバネが対象ではなく、分子の振動などを調和振動モデルとして考える場合などは、「力の定数」という呼び方もします。)

ただ、プラスマイナスの符号にだけは注意しましょう。まず、ばね定数 k は正の値であるとします。次にばねの平衡点を原点 x = 0 として、座標の正負の向きを次のように設定します。

  • 原点から見て、ばねが伸びている方向:プラス方向
  • 原点から見て、ばねが伸びている方向:マイナス方向

この時、ばねによる力の向きを考えてみます。符号に注意してください。

  • ばねが伸びている時・・つまり位置座標が正の値の時:
    力は原点向き つまり負の方向(例えば x = 2 だったら、F = -2k )
  • ばねが縮んでいる時・・つまり位置座標が負の値の時:
    力は原点向き つまり正の方向(例えば x = -2 だったら、F = +2k )

これをまとめますと、「ばねの力は位置座標と常に逆の符号」という事です。 $$ばねの力:F = -kx(t)\hspace{10pt}(x(t):位置座標、ばね定数 k>0)$$ そうしますと運動方程式は次のようになるわけです。 $$-kx(t)=m\frac{d^2x(t)}{dt^2}\hspace{10pt}\Leftrightarrow \hspace{10pt}\frac{d^2x(t)}{dt^2}+\frac{k}{m}x(t)=0$$

物体の運動の様子を調べるにはこれを解けばよいわけですが、もう分かっているわけです!

② 解いてみて完成

ばねにつながれた物体に関する運動方程式\(\frac{d^2x(t)}{dt^2}+\frac{k}{m}x(t)=0\) は、
形としては「2階微分=負の定数×もとの関数」ですから、解は三角関数 Acos(bt+C) の形ですね。
(一応、\(\frac{k}{m}>0\)という符号にも注意してください。)

もう少し物理的に見通しをよくするために、
\(\frac{k}{m}=\omega^2\)(\(\omega\):「オメガ」)という置き換えが、よく行われます。
そのように置き換えると、運動方程式は\(\frac{d^2x(t)}{dt^2}+\omega^2 x(t)=0\) となりますから、
解は \(A\cos (\omega t+C)\) という形で書けるわけです。

このオメガ \(\omega\) という記号は、ばねの調和振動に限らず、回転運動などの周期的な運動における角速度角振動数角周波数(1秒間に何ラジアン回るか)を表します。ばねの場合は「振動」ですので、角振動数と言う場合が多いです。いずれにしても、ばねの運動を周期運動と見た場合に、角度の部分(「位相」)がどのように変化するかを表す値というわけです。

ここでは \(\frac{k}{m}=\omega^2\) と、おいただけでしたから、そのような角振動数は、物体の質量とばねの性質(ばね定数の大きさの違い)によって決まるという事も分かります。

さて、使用する実質5つの公式のうち、まだ使っていないのが 自然対数の底 e の指数関数の微分公式です。最後に紹介するタイプの微分方程式は、この e の指数関数の微分公式を用いて解けます。

⑤ \(y^{\prime\prime}+by^{\prime}+x=0\)・・粘性抵抗ありのばねの運動

5つ目の微分方程式として、\(y^{\prime\prime}+by^{\prime}+x=0\) で「『特性方程式』が異なる2つの実数解を持つ場合」を説明いたします。この、後のほうにくっついてる妙な条件は別になくてもきちんと微分方程式は解けるのですが(特性方程式を使った一般の場合の解法)、簡単なのがこの条件の場合ですので、この場合を述べます。
物理的には、粘性の強い流体の中でのばねの運動で、振動する事なく少し動いて止まってしまう・・という運動を表します。

数学的解法 ■ 物理的意味:粘性抵抗が「強い」場合のばねの挙動

数学的解法:e の指数関数の微分を使おう

これの説明は他のものと比べて少し長いですが、「公式を上手に当てはめれば解ける」という事には変わりありません。

\(y^{\prime\prime}+by^{\prime}+cy=0\)という形の微分方程式

$$ \frac{d^2}{dx^2}f(x)+b\frac{d}{dx}f(x)+cf(x)=0\hspace{10pt}x^2+bx+c=0が異なる「2つの『実数解』」を持つ場合$$ このような形の方程式で、何やら変な条件がくっついている場合の微分方程式です。 $$解: e の指数関数\hspace{5pt}f(x)=Ae^{\alpha x}+Be^{\beta x}$$ $$(A,B:定数、\alpha, \beta は x^2+bx+c=0 の解(異なる2つの実数解)$$

このタイプの微分方程式を解くには、e の指数関数の性質と、1つ前の微分方程式の例でも用いた
「合成関数の微分公式で『定数調節』」する手法を上手に組み合わせればよいのです。

対象の関数微分公式微分方程式の解法での役割
③自然対数の底 e の指数関数\({\large \frac{d}{dx}e^x=e^x}\)微分すると元の関数に戻る
⑤合成関数の微分\({\large \frac{df(y)}{dx}=\frac{df(y)}{dy}\frac{dy(x)}{dx}}\)微分方程式内の定数倍などを調整

考え方を簡単に述べましょう。三角関数で cos (bx) 等を考えた時は、
1階微分で b倍、2階微分で\(b^2\)倍という定数倍調整に利用できました。
同様に、指数関数についても、定数 \(\alpha\) を用いて \(e^{\alpha x}\) といった形の関数を考えると定数倍調整に使えます。

この \(e^{\alpha x}\) という関数を微分すると、

  • 微分してないもとの関数:\(e^{\alpha x}\)
  • 微分1回目:\(\frac{d}{dx}e^{\alpha x}=\alpha e^{\alpha x}\)
  • 微分2回目:\(\frac{d^2}{dx^2}e^{\alpha x}=\alpha^2 e^{\alpha x}\)

ポイントは、「これらを加え合わせてみる」という事です。
e の指数関数は微分しても元の関数になるだけという際立った性質があるため、何回微分したとしても\(e^{\alpha x}\) が必ず含まれる事に注意して、足し算してみましょう。すると・・ $$\frac{d^2}{dx^2}e^{\alpha x}+\frac{d}{dx}e^{\alpha x}+e^{\alpha x} =\alpha^2 e^{\alpha x}+\alpha e^{\alpha x}+e^{\alpha x} =e^{\alpha x}(\alpha^2+\alpha +1)$$ もし「これがゼロ」であるなら、指数関数はゼロになりませんので、
後ろにくっついている \(\alpha^2+\alpha +1\) がゼロという事です。
少し、2次関数、2次方程式との関係がありそうですね?

では今度は、定数倍も考えて、
\(\frac{d^2}{dx^2}e^{\alpha x}+b\frac{d}{dx}e^{\alpha x}+ce^{\alpha x}\) を考えてみましょうか。 $$\frac{d^2}{dx^2}e^{\alpha x}+b\frac{d}{dx}e^{\alpha x}+ce^{\alpha x} =\alpha^2 e^{\alpha x}+b\alpha e^{\alpha x}+ce^{\alpha x} =e^{\alpha x}(\alpha^2+b\alpha +c)$$ これがゼロになるには、先ほどと同じ論法で、
\(\alpha^2+b\alpha +c=0\)となる \(\alpha\) であればよい、という事です。

\(\alpha\) が \(\alpha^2+b\alpha +c=0\) となる事を、 全く同じ意味で、次のようにも言い換えられます。 $$「\alpha が x^2+bx +c=0 の解である」$$

そしてそのような場合、じつはまさしく上の微分方程式の形:
\(\frac{d^2}{dx^2}f(x)+b\frac{d}{dx}f(x)+cf(x)=0\)を満たしています。
ですから、まず次の事が言えます。

POINT

$$\alpha が x^2+bx +c=0 の解である時、e^{\alpha x}は$$ $$\frac{d^2}{dx^2}f(x)+b\frac{d}{dx}f(x)+cf(x)=0の解の1つ$$ また、任意定数を A として、\(Ae^{\alpha x}\) も解になります。
■ ここで解法のために考えている2次方程式を「特性方程式」と言います。n階の定数係数の線型の微分方程式に対する、同じ係数を用いたn次方程式を一般的に特性方程式と呼びます。

さて、\(\alpha が x^2+bx +c=0\) の「実数解」である時で、重解では無い時
同じく実数解となる \(\beta\) が存在するわけで、これを用いた
\(e^{\beta x}\) も、同じく\(\frac{d^2}{dx^2}f(x)+b\frac{d}{dx}f(x)+cf(x)=0\)の解なのです。
微分の基本的な性質として\(\frac{d}{dx}(bf(x)+cg(x))=b\frac{df(x)}{dx}+c\frac{dg(x)}{dx}\) というもの(線型性)があった事に注意しますと、
「特性方程式」が2つの異なる実数解を持つ時の上記の微分方程式の解は、任意定数も考慮すると次のように表せるわけです:

解:「特性方程式」が2つの異なる実数解を持つ場合 $$\alpha と\betaを x^2+bx +c=0 の異なる2つの解、A と B を任意定数として、$$ $$\frac{d^2}{dx^2}f(x)+b\frac{d}{dx}f(x)+cf(x)=0の解は$$ $$Ae^{\alpha x}+Be^{\beta x} で表されます。$$ ■ 特性方程式が重解を持つ場合と、実数解をもたない場合にも微分方程式を解く事はできますが、これは別の記事で詳しく述べましょう。指数関数の微分の性質が重要である点は同じです。

物理でも、運動方程式がこのタイプの微分方程式になる事があります。それについて、見てみましょう。

物理的意味:粘性抵抗が「強い」場合のばねの挙動

ばねにつながれた物体の運動を表す運動方程式には、位置座標(1次元・直線)の「2階微分」と、「もとの関数の定数(ばね定数)倍」という項が含まれています。粘性のある流体の中のばねの運動の場合、これに粘性抵抗力が加わり、
これは速度に比例する事が実験から分かっています。つまり、「1階微分」に比例する項が加わるという事です。
特性方程式が異なる2つ実数解を持つ場合は、粘性が結構強い場合になります。

設定をして運動方程式を解く ■ どういう運動かを考察してみよう 

設定をして運動方程式を解く

まず、座標の設定としては、抵抗力のないばね運動の時と同じで、一次元の運動と考えてよいのです。ばねの平衡点を原点として、伸びる方向をプラス方向、縮む方向をマイナスとします。

次に、力を整理しましょう。ばねの力と、粘性抵抗力の2つがあります。粘性抵抗力は、運動を妨げる方向に働きますので、マイナス符号をつけるのです。(この抵抗力の符号の考え方は、空気抵抗力や摩擦力に対しても同じです。)

この場合に働く2つの力
  1. ばねの力:\(-kx\) k:ばね定数(正の値)
  2. 粘性抵抗力:\(-\rho \frac{dx(t)}{dt}\) \(\rho\):てきとうな比例定数(正の値)

すると、運動方程式は次のようになります。 $$-kx-\rho \frac{dx(t)}{dt}=m\frac{d^2x(t)}{dt^2}$$ $$\Leftrightarrow \frac{d^2x(t)}{dt^2}+\frac{\rho}{m} \frac{dx(t)}{dt}+\frac{k}{m}x=0$$ $$\left(\Leftrightarrow \frac{d^2x(t)}{dt^2}+2\gamma \frac{dx(t)}{dt}+\omega^2x=0\hspace{10pt}\gamma=\frac{\rho}{2m},\omega^2=\frac{k}{m}\right)$$ 最後の形には別に変形しなくてもよいのですが、この形だと、解を出しやすいです。
いずれにしても、\(\frac{d^2}{dx^2}f(x)+b\frac{d}{dx}f(x)+cf(x)=0\) の形に確かになっています。

特性方程式が「異なる2つの実数解を持つ」という条件が満たされているとすると、上記の要領で解く事ができます。一応、特性方程式の解を出しておきましょう。(※2次方程式なので比較的容易に出せる事に注意してください。) $$特性方程式:X^2+2\gamma X+\omega^2X=0\Leftrightarrow (X+\gamma)^2-\gamma^2+\omega^2=0 $$ $$\Leftrightarrow (X+\gamma)^2=\gamma^2-\omega^2\Leftrightarrow X+\gamma=\pm \sqrt{\gamma^2-\omega^2}$$ $$\Leftrightarrow X=-\gamma \pm \sqrt{\gamma^2-\omega^2}$$ この2解(実数解という条件とします)を用いて、
微分方程式のほうの解は\(Ae^{(-\gamma +\sqrt{\gamma^2-\omega^2})t}+Be^{-\gamma -\sqrt{\gamma^2-\omega^2})t}\)
・・という事になります。

どういう運動かを考察してみよう

解が出ましたので「これで終わり」でもよいのですが、少し汚い形という事もあって、結局どういう運動になるのかが分かりにくいですね。そこで、もう少しだけ考察をしてみましょう。

特性方程式の2解の形をよく見ますと、 \(X=-\gamma \pm \sqrt{\gamma^2-\omega^2}\) は、これが実数解であるという前提で、
プラスマイナスのどちらの符号をとってもじつは「負の値」なのです。
平方根につくのがマイナス符号の場合は、最初の定数の取り方から X は必ず負の数ですし、
平方根につくのがプラス符号の場合でも \(\sqrt{\gamma^2-\omega^2}<\gamma\) ですから、これは負の数になります。
(※分かりにくい場合、2乗してみてください。)

という事は、特性方程式の2解を、「正の定数」\(p,\hspace{5pt}q\hspace{5pt}を用いて X=-p,-q\)と書くと、 微分方程式のほうの解は、 $$x(t)=Ae^{-pt}+Be^{-qt}$$ となります。これだと多少見やすくて、p と q を正の数だとしましたから、これらにマイナスがついたものが指数に来ているという事は、時間に関して「単調減少」の関数であり、しかも変数の値が大きくなるとゼロに近づいていく事が分かります。 また、普通の指数関数ですので、三角関数と違って「振動」もしません。

この考察をまとめると、例えば次のような事が言えるのです。

粘性抵抗が強い場合の考察
  1. 時間が経てば経つほど,位置座標の x(t) の値は小さくなり、
    じゅうぶんな時間経過後(t → ∞)は、原点x(t) = 0 (ばねの平衡点)に近づき、
    そこからほぼ動かなくなる。
  2. 位置座標 x(t) は通常の指数関数で表されているので、振動はしない。
    伸びた状態から始まるにしても縮んだ状態から始まるにしても、そこから平衡位置に戻って動かなくなり、運動が終了する。

特性方程式が2次方程式の場合、実数解を持つかは \(\sqrt{\gamma^2-\omega^2}\) の中身が正か負かで決まるわけですが、
\(\gamma =\frac{\rho}{2m}\) が粘性抵抗に由来する定数である事から、
粘性が強いほど特性方程式の解が実数解になりやすく、振動しない運動(過減衰)になりやすいという事です。
「では特性方程式が複素数解を持つ場合はどうなるのか?」と言いますと、結論は、
「振動しながら振幅が減衰し、時間が経つと原点(ばねの平衡点)に落ち着く」という運動になります。
ちなみに、特性方程式の解が重解の場合は、ぴったり合う事自体ほとんどないと考えられますが、減衰していく運動である事には変わりありません。

微積分学や物理の入門としては、まず「高校で教わった事を直接使える」ものについて、いくつか具体例を見ながら中に入っていけた事になります。同じように、まずは手持ちの知識を用いて入っていける部分から、少しずつ新規の知識も知っていくようにすると大学数学の内容に無理なく入っていけると思います。

初等関数の微分公式

この記事では初等関数の微分公式とその導出・証明をまとめています。ここで扱う初等関数は主に単項式、三角関数、指数関数、対数関数を主に指します。(逆三角関数は別の記事で詳しく扱っています。)

■関連サイト内記事:微分についての定義や定理、関連する事項などです。

初等関数の微分公式の一覧表

基本となる初等関数の微分公式

初等関数について、微分演算によって得られる導関数のうち、
最も基本的なものと思われるものをまとめると次のようになります。

関数名導関数備考
定数関数y=cy’=0定数に対する微分は0になります。
単項式y=xay’=axa-1aは実数で、y=1/xや
y=\(\sqrt{x}\) を含む
正弦関数y=sinxy’=cosx4回微分するともとの式に戻る
余弦関数y=cosxy’=-sinx4回微分するともとの式に戻る
指数関数y= ey’=e自然対数の底 e を使った場合。
もとの関数と導関数が一致。
対数関数y= lnxy’=1/x自然対数関数の場合。(底が e)

単項式」とは2次関数や3次関数がxaの形で単独で存在しているものを指し、それを定数倍と和や差で組み合わせると「多項式」になります。
定数関数については単項式で指数が0の場合と考えても可です。定数関数の微分が0になるという事は、要するに普通の1とか2とかの定数を微分すると結果は必ず0であるという意味です。

単項式の導関数について代表的なものをいくつか挙げると次のようになります。

a単項式導関数備考
a=1y=xy’=12階微分は0
a=2y=xy’=2x2階微分は定数
a=3y=xy’=3x3次関数のグラフの
形状に関係
a=-1y=1/x
 =x-1
y’=\(-\frac{\Large 1}{\Large x^2}\)
 =-x-2
x=0で微分不可能
(関数を定義できない)
a=-2y=1/(x)
 =x-2
y’=\(-\frac{\Large 2}{\Large x^3}\)
 =-2x-3
x=0で微分不可能
(関数を定義できない)
a=1/2y=\(\sqrt{x}\)
 =x1/2
y’=\(\frac{\Large 1}{\Large 2\sqrt{x}}\)
 =(1/2)x-1/2
x=0で微分不可能
(導関数を定義できない)

その他の初等関数の微分公式

次に、その他の初等関数の微分公式です。
これらは、基本となる微分公式から導出できるものが少なくありません。

関数名導関数備考
正接関数y=tanxy’=1/(cosx)
 =1+tan
正弦、余弦の微分公式と
積・商の微分公式から
指数関数
(一般)
y=ay’=(ln a)ae 以外の指数関数
対数関数
(一般)
y= loga
=(lnx)/(ln a)
y’=1/(xln a)e 以外の底。
底の変換公式使用
逆正弦関数y=Arcsinxy’=\(\frac{\Large 1}{\Large \sqrt{1-x^2}}\)マイナス符号をつけると
逆余弦関数の導関数
逆正接関数y= Arctanxy’=\(\frac{\Large 1}{\Large 1+x^2}\)積分で理論上
重要な場合がある
双曲線関数y= \(\frac{\Large e^x-e^{-1}}{\Large 2}\)
 =sinhx
y= \(\frac{\Large e^x+e^{-1}}{\Large 2}\)
 =coshx
(sinhx)’=coshx
(coshx)’=sinhx
三角関数の導関数の
関係に似ている。
(微妙に違う。)

微分の公式と接線の傾きの関係

初等関数の微分公式は、基本となる単項式・三角関数(特に正弦と余弦)・指数関数・対数関数に限って言えば比較的平易な形をしているとも言えます。

と言ってもプラスとマイナスの符号の関係など、細かい部分は混乱する事もあるかもしれません。そのような時には、関数のグラフの接線の傾きとしての微分係数を考えてみると理解に役立つ場合があります。

関数のグラフを描いてみて、接線の傾きが正(グラフで言うと右上がり)、負(右下がり)、0、無限大など、見て大体分かる部分があるので、微分の公式の導関数との対応を考えると比較的分かりやすいです。

対数関数などは、 微分して得る導関数は 1/x ですが、x がゼロに近づくにつれて無限大の急な傾きになっていく事が表現されています。また、逆に x を無限大にしていくと傾きはどんどん緩やかに0に近づいて行く事になります。

x = 0 付近で傾きが非常に急で無限大に近く、x の値が巨大になるにつれて傾きが緩やかになり次第にほとんど0になるのは、「xの平方根」(xの1/2乗)などの関数でも同じです。

初等関数の微分公式の証明

微分の定義式からの個々の関数の微分公式の導出および証明を記します。

なるべく定義式からの極限として考えますが、
積の微分公式・合成関数の微分公式・逆関数の微分公式を途中で使ったほうがよい事もあります。(積の微分公式等はいずれも微分の定義式から導出されます。)

基本となる初等関数の微分公式は結果は比較的平易ですが、単項式で実数を指数とする場合の証明は意外と複雑だったり、三角関数に対しては計算を進めるうえで加法定理が必要だったりと、微分の定義から公式を導出する過程は意外と複雑であったりします。(そのため、微分を使っていくうえでは証明方法を理解したうえで「公式の結果は覚えてしまったほうが早い」とも言えます。)

単項式の微分公式の証明

定義式に直接単項式を代入すると、$$\frac{(x+h)^a-x^a}{h}$$となります。

他方で(x+h)a について、a が自然数 nであれば2項定理で展開する事によって$$\frac{nhx^{n-1}}{h}=nx^{n-1}$$の項だけが h→0 で 残り、他の項は全てゼロに収束します。

つまりxの導関数2xや、xの導関数3xにおける、
2とか3とかの係数は2項展開した時の係数由来(の項)であるというわけです。

しかしa が自然数でない場合には、少し証明に工夫を要します。
a が実数の場合でも「一般2項定理」が成立するのですが、その肝心の一般2項定理の証明が、一般的には単項式の微分の結果を使って行われます。(マクローリン展開を使います。マクローリン展開とは、微分を利用した関数の無限級数展開です。言い換えると微分の公式を必要とする展開です。)
そこで、単項式の微分公式の証明では、強引に一般2項定理の単独での証明を試みるよりは、
実は対数関数の微分を利用するほうが簡単です。

証明(a が実数の場合の単項式xaの微分公式)

対数の性質 ln xa=a ln x に注意して、$$\frac{d}{dx}(\ln x^a)=\frac{d}{dx}a\ln x=a\frac{d}{dx}\ln x=\frac{a}{x}$$ 他方で、合成関数の微分公式を用いると同じ式を別の形で表せます。
$$\frac{d}{dx}(\ln x^a)=\frac{\large{\frac{d}{dx}(x^a)}}{\large{x^a}}$$ という事は、$$ \frac{a}{x}=\frac{\large{\frac{d}{dx}(x^a)}}{\large{x^a}} $$ $$\Leftrightarrow {\large \frac{d}{dx}(x^a)=\frac{a}{x}x^a=ax^{a-1}}【h→0】$$

指数関数の微分公式の証明

指数関数の微分は、e に関する微分公式の証明が基本になります。
証明の方法は、微分の定義式に直接関数を当てはめて計算を進める形になります。
その際に、指数と対数との関係を使って式変形をしていきます。

証明(e の指数関数の微分公式)

$${\large\frac{e^{x+h}-e^x}{h}=e^x\frac{e^h-1}{h}=e^x\frac{e^h-1}{\ln e^h}}$$

次に、eh-1=kとおきます。$$e^h-1=k\Leftrightarrow\hspace{5pt}e^h=1+k\hspace{5pt}に注意して$$ $${\large\frac{e^h-1}{\ln e^h}}=\frac{k}{\ln (1+k)}=\frac{1}{\Large{\frac{1}{k}}\large{\ln (1+k)}}$$と表す事ができて、これの分母についてさらに$$\frac{1}{k}\ln (1+k)=\ln (1+k)^{\Large{\frac{1}{k}}}$$ という、e の定義式の形を含んだ式に変形できます。
h→0 の時k→0なので k に関する極限として考えてもよく、 $$\lim_{k \to 0}(1+k)^{\Large{\frac{1}{k}}}=\lim_{k \to \infty} \left(1+\frac{1}{k}\right)^k=e$$ なので $$\lim_{k \to 0}\frac{1}{k}\ln (1+k)=\lim_{k \to 0}\ln (1+k)^{\Large{\frac{1}{k}}}=\ln e = 1 $$ですから $$ \lim_{h \to 0}\frac{e^{\large{x+h}}-e^x}{h}=\lim_{k \to 0}e^x\frac{k}{\ln (1+k)} $$ $$=\lim_{k \to \infty}e^x\frac{1}{\ln (1+\large{\frac{1}{k}})^k}=e^x\frac{1}{\ln e}=e^x\frac{1}{1}=e^x$$

$$\lim_{n \to 0}(1+n)^{\Large{\frac{1}{n}}}=\lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n=e$$ で定義される自然対数の底 (ネピア数)e が有限の値であるという事は、きちんと証明できます。少し面倒ではありますが自然数に関する2項定理を使って式を直接展開して、対象の式を数列として見た時に「上に有界である単調増加数列である」事を示す事で証明できます。e = 2.718・・・である事はマクローリン展開を使うと見やすいです。

一般の指数関数の微分

一般の指数関数の微分については、定義に当てはめて自然対数の底の場合と全く同様にして計算を進めます。対数の底の変換公式により次のようになる事を使います。$$\log_a\left(1+\frac{1}{h}\right)^h=\frac{\large{\ln(1+\frac{1}{h})^h}}{\ln a}$$ $$これは、h → ∞ で\hspace{5pt}\frac{1}{\ln a}\hspace{5pt}に収束します。$$
微分の定義式による計算ではこの式が分母にありますから微分により得られる導関数は次式です。$$\frac{d}{dx}a^x=a^x\ln a$$

対数関数の微分公式の証明

直接定義から計算しても証明できますし、指数関数の逆関数が対数関数なので、逆関数の微分公式を用いても証明できます。いずれの方法でも、自然対数の底 e の定義式の極限値の存在が、対数関数の微分公式でも成立の根拠となります。

以下では微分の定義式から証明してみます。

証明(対数関数の微分公式)

$$\frac{\ln (x+h)-\ln x}{h}=\frac{\ln \large{\frac{x+h}{x}}}{h}=\frac{\ln \left(\large{1+\frac{h}{x}}\right)}{h}$$ $$=\frac{1}{x}\frac{x}{h}\ln \left(1+\frac{h}{x}\right)=\frac{1}{x}\ln \left(1+\frac{h}{x}\right)^{\LARGE{\frac{x}{h}}}$$ $$ \rightarrow \frac{1}{x}\ln e =\frac{1}{x} 【h→0】$$

三角関数の微分公式の証明

三角関数のうち正弦関数と余弦関数の微分公式は、まず定義に当てはめて、sin(x+h) の形を三角関数の加法定理によって (sinx)(cos h) +(cosx)(sin h)の形にして計算を進めれば導出する事ができます。
ただし、計算の過程の最後で$$\lim_{h \to 0}\frac {\sin h}{h}=1$$の極限の公式が必要になります。(この公式は角度を弧度法で考えないと話が変になります。)

証明(正弦関数と余弦関数の微分公式)

■正弦関数 sin x の微分
$$\frac{\sin (x+h)-\sin x}{h} =\frac{\sin x \cos h + \cos x\sin h – \sin x}{h}$$ $$=\sin x \frac{(\cos h -1)}{h}+\cos x\frac{\sin h}{h} =-2\sin x \frac{\sin^2 \Large{\frac{h}{2}}}{h}+\cos x\frac{\sin h}{h}$$ $$\left(∵ \cos h-1=\cos^2\frac{h}{2}-\sin^2\frac{h}{2}-1=1-2\sin^2\frac{h}{2}-1=-2\sin^2\frac{h}{2}\right)$$ $$=-(\sin x) \sin \frac{h}{2}\frac{\sin \large{\frac{h}{2}}}{ \large{\frac{h}{2}}}+\cos x\frac{\sin h}{h}$$ $$ →\cos x【h→0】\left(\lim_{h\to 0}\frac{\sin h}{h}=1より\right)$$ ■余弦関数 cos x の微分
$$\frac{\cos (x+h)-\cos x}{h} =\frac{\cos x \cos h – \sin x\sin h – \cos x}{h}$$ $$=\cos x \frac{(\cos h -1)}{h}-\sin x\frac{\sin h}{h}=-2\cos x \frac{\sin^2 \Large{\frac{h}{2}}}{h}-\sin x\frac{\sin h}{h}$$ $$\left(∵正弦の時と同じく \cos h-1=-2\sin^2\frac{h}{2}\right)$$ $$=-(\cos x) \sin \frac{h}{2}\frac{\sin \large{\frac{h}{2}}}{ \large{\frac{h}{2}}}-\sin x\frac{\sin h}{h}$$ $$→-\sin x 【h→0】$$

正接関数の微分に関しては定義からも計算できますが、商の微分公式を使うほうがじつは簡単です。tanx=(sinx)/(cosx) である事を利用します。

途中式にある(cosh -1)/hの極限計算は加法定理を使わない計算方法もあります。

$$\frac{\cos h-1}{h}=\frac{(\cos h-1)(\cos h+1)}{h(\cos h+1)}=\frac{\cos^2 h-1}{h(\cos h+1)}$$

$$=\frac{-\sin^2 h}{h(\cos h+1)}=\frac{-\sin h}{\cos h+1}\cdot\frac{\sin h}{h}\rightarrow 0\cdot 1=0【h\rightarrow 0】$$

(sin x)/x の極限問題

ここでは、円弧の長さを変数とする関数として正弦、余弦、正接を考えてみます。(それが弧度法の考え方そのものでもありますが、ここでは「角度」という語を使わないで考えてみます。)

その場合に余弦と正弦波は単位円の円周上の点のx座標とy座標として考える事ができますが、正接も相似な三角形の辺の比から tanx=(sinx)/(cosx) としてきちんと考える事ができます。

この時に円弧の長さをxとすると sinx<x<tanxが成立しますが、
より詳しく見るとsinxは単位円に内接する正多角形の周の一部であり、
tanxは単位円に外接する正多角形の周の一部です。
この図形的な長さの関係は、円弧および円周の長さを計算する時に使うものと実は本質的に同じです。
すなわち円の内接多角形と外接多角形の周の長さを考えて、角の数を増やした時の極限値として円弧や円周の長さを計算するやり方です。

それらの正多角形を正n角形として考えた時、
内接する正n角形については周の長さはnについての単調増加数列となり、逆に
外接する正n角形については周の長さはnについての単調減少数列となります。
それらのn→∞の時の極限値として円弧の長さxが存在します。
詳しく言えばそれは半径および直径に比例し、円周全体の場合の比例定数はπ(円周率)です。
そのため、任意の長さの円弧についてsinx<x<tanxが成立するというわけです。
(この図形的考察は、より詳細には三角不等式等を使って丁寧に見て行く必要があります。)

この時に内接・外接する正多角形の隣り合う頂点を結んだ円弧の長さxは、x→0となります。それが(sinx)/xの極限としてx→0を考える図形的な意味です。

sinx<x<tanxに1/(sinx)を乗じると、1<x/(sinx)<1/(cosx) です。
x→0で1/(cosx)→1なので、極限の性質によりx→0でx/(sinx)→1
(sinx)/xの極限はその逆数ですが、1の逆数なのでそのまま同じ1になります。
そのため、x→0で(sinx)/x→1という事になります。