和積・積和・倍角・半角の公式

三角関数の積和の公式、和積の公式、倍角の公式、半角の公式という一連の公式は互いに本質的に異なるものではなく、全て三角関数の加法定理から導出されるものです。
(英:倍角の公式 double-angle formula 半角の公式 half-angle formula)
(和積の公式と積和の公式は、英語では加法定理の一部だと捉えられる事も多いようです。)

★高校数学の中の位置付けだと、まずこれらの公式よりも大事なのは加法定理であると言えます。これらの公式は、じつは加法定理さえ覚えていれはその場で割と簡単に導出が可能であるからです。
これらの和積の公式等を暗記するにしても、まずは加法定理との形との対応から慣れていき、入試問題などを解いて練習しながら覚えていくのがよいと思います。

公式の内容

積和の公式、和積の公式、倍角の公式、半角の公式の内容を順に記すと次のようになります。これらは切り離された別々の公式ではなくて、本質的には加法定理を目的に応じて使いやすいように変形したものです。

積和の公式

次の正弦と余弦の「積」に関する4式を言います。【三角関数の積の形を和にする公式です。】$$\sin A \cos B=\frac{\sin (A+B)+\sin (A-B)}{2}$$ $$\cos A \sin B=\frac{\sin (A+B)-\sin (A-B)}{2}$$ $$\cos A \cos B =\frac{\cos (A+B)+\cos (A-B)}{2}$$ $$\sin A \sin B =-\frac{\cos (A+B)-\cos (A-B)}{2}$$

和積の公式

次の正弦と余弦に関する4式を言います。【三角関数の和や差の形を積にする公式です。】$$\sin C +\sin D =2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$ $$\sin C -\sin D =2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$ $$\cos C +\cos D =2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$ $$\cos C -\cos D =-2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$ 後述しますが、ここで使っているCやDは、加法定理や上記の積和の公式でのAとBを使ってC=A+B, D=A-Bとおいたものです。

倍角の公式

正弦と余弦に関する倍角の公式は次の2式です。 $$\sin 2A=2\sin A\cos A$$ $$\cos 2A=\cos ^2A-\sin ^2A$$ 余弦のほうはcos2A=2cosA-1=1-2sinAとも表せます。
正接の倍角の公式は tan2A=(sin2A)/(cos2A)で計算します。

半角の公式

正弦と余弦に関する半角の公式は次の2式です。 $$\cos A=\pm\sqrt{\frac{1+\cos 2A}{2}}$$ $$\sin A=\pm\sqrt{\frac{1-\cos 2A}{2}}$$ プラスマイナスの符号は角度に応じて適切なほうを選びます。
A=X/2といった置き換えをすると「半角」という事をより明確にもできます。
正接の半角の公式も正弦を余弦で割って計算できます。

ところで、これらの式の数を合計すると12個ありますね。これらを1つ1つ、別々の公式として暗記するのは大変です。そのため、もとになっている加法定理を変形したものであるという見方のほうが勧められます。

公式の導出①
積和の公式、和積の公式、倍角の公式などは、加法定理をもとにして作る公式です。

三角関数の加法定理については証明も含めて別途に詳しく述べていますが、正弦と余弦について結果だけ記すと次のようになります。

加法定理
  1. sin(A+B)=sinAcosB+cosAsinB
  2. sin(A-B)=sinAcosB-cosAsinB
  3. cos(A+B)=cosAcosB-sinAsinB
  4. cos(A-B)=cosAcosB+sinAsinB

これらを組み合わせると和積・積和の公式が導出され、角度の1つを置き換えると倍角の公式になります。
半角の公式については倍角の公式を変形して導出する事になります。

証明①:積和の公式

加法定理の4式のうち、正弦同士、余弦同士を見ると、2つの項は符号が違うだけで同じ形をしています。この事を使います。

まず、正弦についての加法定理の2式を加えてみましょう。

sin(A+B)+sin(A-B)=sinAcosB+cosAsinB+sinAcosB-cosAsinB=2sinAcosB

本質的にはこれだけでよくて、和積の公式も積和の公式も、本質的には本来はこの同じ形の関係式です。ただ、三角関数の積を和に直すか、和を積に直すかで少しだけ形を変えて「公式」としているだけです。まず、積和の公式は上記の式の両辺を単純に2で割って、積が和の形になるようにします。

$$\sin A \cos B=\frac{\sin (A+B)+\sin (A-B)}{2}$$

他の3式も、加法定理の2式を加える・2式の差をとる事で導出します。

$$\sin (A+B)-\sin (A-B)=2\cos A \sin B\Leftrightarrow\cos A \sin B=\frac{\sin (A+B)-\sin (A-B)}{2}$$

$$\cos (A+B)+\cos (A-B)=2\cos A \cos B\Leftrightarrow\cos A \cos B =\frac{\cos (A+B)+\cos (A-B)}{2}$$

$$\cos (A+B)-\cos (A-B)=-2\sin A \sin B\Leftrightarrow\sin A \sin B =-\frac{\cos (A+B)-\cos (A-B)}{2}$$

証明②:和積の公式

では、和の形を積に直している和積の公式は、どのように出すのでしょう。

じつは使う式は全く同じで「変数の置き換え」をするのです。

一般的には次のようにします。
まずA+B=C,A-B=Dのようにおき直します。
次にこの2式を加えると 2A=C+D ⇔ A=(C+D)/2
片方からもう片方を引くと2B=C-D ⇔ (C-D)/2 
このようになる事を使って、式を整理して公式としています。

$$\sin (A+B)+\sin (A-B)=2\sin A \cos B においてA=\frac{C+D}{2}, \hspace{5pt}B=\frac{C-D}{2}とおくと$$

$$\sin C +\sin D =2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

加法定理の2式の和ではなく「差」をとると、正弦の差を積に直す形の公式が得られます。

$$\sin (A+B)-\sin (A-B)=2\cos A \sin B においてA=\frac{C+D}{2}, \hspace{5pt}B=\frac{C-D}{2}を代入します。$$

$$\sin C -\sin D =2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

余弦のほうについても、加法定理の2式を加える・差をとる事で公式を導出します。まず余弦に関する和積の公式の和の形のほうのものは次のようになります。

$$\cos (A+B)+\cos (A-B)=2\cos A \cos B においてA=\frac{C+D}{2}, \hspace{5pt}B=\frac{C-D}{2}を代入します。$$

$$\cos C +\cos D =2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

差の形のほうは次のようになります。

$$\cos (A+B)-\cos (A-B)=2\cos A \cos B においてA=\frac{C+D}{2}, \hspace{5pt}B=\frac{C-D}{2}を代入します。$$

$$\cos C -\cos D =-2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

具体例:
例えば、唐突に sin75°+sin15°の値はいくらかと聞かれたらこの公式を使えば即座に答えは出るという事です。(こういう問いは理解度を試すための問題で、高校数学以外ではあまりやりません。)
(75°+15°)÷2=45° と (75°-15°)÷2=30° の正弦の値を使います。$$\sin 75°+\sin 15°=2(\sin 45°)(\cos 30°)=2\cdot \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{2}$$ 加法定理で75°=30°+45°などとして加法定理を使って計算しても結果は同じです。ただ、和積の公式を知っていると多少計算は速く済みます。

証明③:倍角と半角の公式

次に倍角の公式と半角の公式と呼ばれる式の導出方法です。
これらもまた別々のものではなく、本質的には同じ式であるものを変形したものです。

公式の導出②
余弦の半角の公式は余弦の倍角の公式から得ますが、正弦の半角の公式も同様に余弦の倍角の公式から導出されます。

まずは倍角の公式から見ましょう。

sin2A=2sinAcosA という式ですが、
じつはこれは、加法定理で2つの角度についてA=Bとしているだけなのです。
余弦のほうの倍角の公式も、やり方は同じです。

つまり次のようにします。
sin(A+B)=sinAcosB+cosAsinB において A=Bとして sin2A=2sinAcosA
cos(A+B)=cosAcosB-sinAsinB において A=Bとして cos2A=cosA-sin

余弦のほうは、cosA+sinA=1を使ってcosA=2cosA-1、もしくはcosA=1-2sinAとも表せます。

次に半角の公式の導出です。

このページで紹介している公式のうち半角の公式についてだけは加法定理から直ちには出せず、余弦のほうの倍角の公式を変形する事になります。
(ただし倍角の公式が簡単に出るので、導出に手間はかからないはずです。)

cos2A=2cosA-1 ⇔ cosA=(cos2A+1)/2 から余弦の半角の公式、
cos2A=1-2sinA ⇔ sinA=(cos2A-1)/2 から正弦の半角の公式を得ます。
2乗がありますので、平方根を考える事になります。

$$\cos A=\pm\sqrt{\frac{1+\cos 2A}{2}}$$

$$\sin A=\pm\sqrt{\frac{1-\cos 2A}{2}}$$

平方根をとる時に一般の場合では符号が確定しませんが、具体的に例えばプラスの鋭角に対する「半分の角度」を考えるのであれば、余弦も正弦もプラスのはずなので、プラス符号のほうをとります。

このように倍角・半角の公式もまた、基本は本質的に加法定理によるものであるわけです。加法定理さえ覚えておけば、例えば倍角の公式は暗記しなくても即座に出てきますし、半角の公式で正弦・余弦の公式がともに余弦を使って表される事も理解できて覚えやすいはずなのです。

尚、角度Aに対する3倍の3Aを考えた3倍角の公式、4倍角の公式、・・なども一応存在します。
ただしこれらも同様に、いずれも加法定理から出せる関係式ですので一般的には暗記しなくてもよい場合も多いと思われる事項です。
参考までに、複素数に関するド・モアブルの定理を使うと、そういった三角関数の3倍角の公式などの形を比較的容易に知る事も可能です。

積和の公式や倍角の公式などは、大学入試で直接計算を問われる場合以外には、三角関数に関する積分の計算に使う事が比較的多いように思います。例えば、sinxcosxの原始関数(微分すると対象の関数となる関数)は微分の公式だけからは即座には分かりにくいので、倍角の公式を思い出してこれを (sin 2x)/2の形にして積分の計算をするといったものです。

また、物理学で2つの正弦波の重ね合わせをするときも、和積の公式を知っていると即座に結果を計算できるので便利です。

この手の三角関数の微積分での変形計算は大学入試でも問われるかもしれませんが、大学数学の微積分の一部でも重要である場合があります。ただし繰り返しになりますが、加法定理とこれらの公式の導出の方法の大筋さえ覚えておけば、もし公式を忘れてしまってもすぐにその場で計算できるようになります。

三角関数の加法定理【証明】

三角関数の加法定理とは、三角関数の角度部分を和や差の形で表す時、個々の角度に対する三角関数の積と和などの組み合わせで計算できるという公式です。
(英:compound angle formulae)

高校数学の中では、その後に続く理論でも使うという意味では加法定理は重要な部類に入る関係式の1つであると言えます。

尚、対数関数についても「加法定理」という言葉を使用する事がありますが、ここでは三角関数についてのものを述べます。

定理の内容

正弦と余弦の加法定理4式 ■ 正接関数の加法定理

正弦と余弦の加法定理4式

三角関数の加法定理は、正弦・余弦・正接について存在しますが正弦と余弦の4式は次のようになります。

加法定理(正弦関数と余弦関数)

2つの角度をAとBとすると、次の関係式が成立します。

  1. sin(A+B)=sinAcosB+cosAsinB
  2. sin(A-B)=sinAcosB-cosAsinB
  3. cos(A+B)=cosAcosB-sinAsinB
  4. cos(A-B)=cosAcosB+sinAsinB

これらの角度の範囲は、三角関数での定義を使用するなら任意の実数になります。
負の数や2直角\(\pi\)を超える値になってもよいし、それらをAやBとして代入する事もできます。

これら4式について、1つの符号を反転させればもう1つの式が得られるので
「実質は正弦と余弦について1つずつ」の2つであると見なすことも可能です。

これは、-B=+Bのように考えて式をまとめても支障はないという意味です。
sin(A-B)=sin(A+(-B))=sinAcos(-B)+cosAsin(-B)=sinAcosB-cosAsinB
cos(A-B)=cos(A+(-B))=cosAcos(-B)-sinAsin(-B)=cosAcosB+sinAsinB
のように導出はすぐにできるので、覚えるのは4式ではなく2式でも計算はできます。

4式でやるか2式でやるかは、理解しやすいほう・覚えやすいほうの考え方でよいと思います。
1つの角度の符号を反転させて別の式の導出をするという考え方は証明でも使います。
また、証明の時に最初に証明されるのはcos(A-B)の式である都合上、最初から4式で考えたほうが理解しやすいという考え方もあります。

正接関数の加法定理

正接関数にも加法定理はありますが、正接は (正弦)/(余弦)で考えれば済む事と、使用頻度が比較的少ない事からここでは参考までに記しておきます。

正接関数の加法定理

正接関数の加法定理の式は次の通りです: $$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$$ $$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}$$

これらの式は、正弦関数と余弦関数の加法定理が成立するという前提で示されます。

$$\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cos B +\cos A\sin B}{\cos A\cos B-\sin A \sin b}=\large{=\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A}{\cos A}\frac{\sin B}{\cos B}}}$$
$$\tan (A-B)=\frac{\sin (A-B)}{\cos (A-B)}=\frac{\sin A \cos B -\cos A\sin B}{\cos A\cos B+\sin A \sin b}=\large{=\frac{\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}}{1+\frac{\sin A}{\cos A}\frac{\sin B}{\cos B}}}$$

このようになる事が根拠であり、
後者の式は tan(-θ)=tanθの関係を前者の式の結果に代入する事でも得られます。

証明

考え方:三角比の範囲の場合
一般角の場合① 余弦 cos (A-B)の式の証明
一般角の場合② 残り3式の導出 

考え方:三角比の範囲の場合

証明はいきなり一般の角度の場合でもできるのですが、まず図形上の考え方を見るために0°~90°の範囲における三角比の中で加法定理が成立する事の説明をしましょう。

図のように単位円の「第1象限」の部分で2つの角度の考えて三角形を作ります。
ここで、2つの角度の差を考えます。図で言うと\(\alpha-\beta\) です。
具体的な角度を入れるなら、例えば60°-15°=45°などを考えています。

その差をとった角度の正弦や余弦をどのように考えるのかというと、図のように点Aから点Bまでの距離をもとの正弦と余弦で表し、さらに△AOBに余弦定理を使用するのです。この時、線分ABの距離は三平方の定理で計算できます。

線分ABの長さは三平方の定理で計算できます。

余弦定理で組み立てた式に三角比の公式 sinθ+cosθ=1 を適用すると、余弦に関する加法定理の関係式cos(A-B)=cosAcosB-sinAsinBが得られるのです。

これはとりあえず0°~90°の範囲の図形的な位置関係から関係式を導出するものですが、じつは三角関数として実数全体の範囲で一般の角度を考える場合でも、基本的な考え方は同じなのです。

  • 2つの角度の2つの三角形を作り、その角度の差によりもう1つの三角形を考える。
  • 三角形は、単位円周上の2点と原点で構成する。
  • 円周上の2点間の距離を三平方の定理で表し、さらに余弦定理を適用する。

この基本的な考え方のもとで証明をしていきます。
尚、その場合だと得られるのは余弦の「差」に関するcos (A-B)の式になりますが、その式が証明されると変数の置き換えで残り3式も証明されるという形になります。

一般角の場合① 余弦 cos (A-B)の式の証明

実数全体を範囲とする拡張された角度(一般角)でも加法定理が成立する事の証明は、一般的には次のように座標上の単位円周上の2点を考えて角度を統一的に扱います。

考え方自体は三角比の範囲の時と同じで、2点の「長さ」(プラスの値)を上手に使うのです。

まず単位円周上の2点(x,y)と(x,y)を考え、
これらの座標を(cosA,sinA)および(cosB,sinB)とおいてもよい事から始めます。
つまり(1,0)から2点まで測った角度をそれぞれAおよびBとしています。

このときの2点の位置関係は、x座標で言うとどちらがどちらよりも大きくても(あるいは等しくても)構わず、むしろどちらの場合でも統一的に扱って証明の計算を進められる事がポイントです。

つまり、鋭角の場合・鈍角の場合・負の角度の場合・・といった場合分けをしなくてもよいという事です。

余弦の場合は、負の角度を代入しても同じ絶対値の正の角度を代入した時と同じ値である事【cos(-θ)=cosθ】もポイントです。結論を言うと、加法定理のうち余弦の cos(A-B)に着目するととうまくいくのです。

単位円周上の2点と原点で作られる三角形に注目します。この時に原点を頂点とする部分の角度はA-Bになります。(これは円周上の2点の位置関係によってプラスの値にもマイナスの値にもなります。)

この三角形に、余弦定理を適用します。余弦定理は辺の長さと1つの余弦に関して、実数全体の範囲の角度で正しい関係式を作ります。

★2点の座標をベクトルと考えて
「ベクトルの長さと内積は回転によって不変だから」・・という論法でやる事も可能です。

2点の長さの出し方は三角比の範囲の時と同じで三平方の定理を使います。(座標上の2点の距離の一般的な計算方法でもあります。)余弦定理で必要なのは2乗の形なので、長さを2乗した形は次のようになります。

(cosA-cosB)+(sinA-sinB)
=cosA+cosB-2cosAcosB+sinA+sinB-2sinAsinB
=2-2cosAcosB-2sinAsinB

【cosA+sinA=1、cosB+sinB=1なのでこのように式が簡単になります。】

他方、三角形の残りの2辺は単位円の半径ですから長さはともに1です。この条件のもとで余弦定理を考えてみると次のようになります。

(cosA-cosB)+(sinA-sinB)=1+1-2・1・1・cos(A-B)
⇔2-2cosAcosB-2sinAsinB=1+1-2cos(A-B)
⇔ cos(A-B)=cosAcosB+sinAsinB

【最後の式変形は両辺にある定数の「2」を消し、さらに両辺をー2で割り整理したものです。】

このように、加法定理のうち余弦の「差の形」のものが成立する事が分かります。この形は2乗の展開式に由来するものというわけです。また、角度の差をとる時に2つの項がプラスで結ばれる理由も証明の過程から比較的明確であるかと思います。2点間の距離の計算による2乗の展開式由来なので同符号というわけです。

この場合の角度には、三角関数の変数としての実数全体の範囲の任意の角度を代入しても成立します。これは余弦定理が実数全体の範囲で角度を代入した場合にも正しい関係式を作っているためです。円周上の2点と原点が同一直線上に並んで「三角形を作らない」場合にでも点同士の距離と余弦関数の値の正しい関係を表しています。

一般角の場合② 残り3式の導出

正弦と余弦に関する加法定理の残り3式はどのように導出するのかというと、それらはcos(A-B)=cosAcosB+sinAsinBをもとに出すのです。

まず、Bがプラスでマイナスであってもこの関係式は成立しますから、Bの部分を-Bに置き換えるとcos(A+B)=cosAcos(-B)+sinAsin(-B)=cosAcosB-sinAsinBとなります。

正弦のほうはどうするのかというと、BをB+\(\pi\)/2に置き換えます。

cos(A+B+\(\pi\)/2)=cosAcos(B+\(\pi\)/2)-sinAsin(B+\(\pi\)/2)=-cosAsinB-sinAcosB

他方で cos(A+B+\(\pi\)/2)=-sin(A+B) でもあるので、

-sin(A+B)=-cosAsinB-sinAcosB⇔sin(A+B)=sinAcosB+cosAsinB

正弦の残り1式は、sin(A+B) のBを-Bに置き換えて得ます。sin(A+B)=sinAcos(-B)+cosAsin(-B)=sinAcosB-cosAsinB です。

これによって、正弦関数と余弦関数の加法定理4式が確かに成立する事になります。

参考までに、三角比の範囲の場合に cos(A-B)のBを-Bに置き換えてcos (A+B)にした場合の図形的意味は次図のようになります。これを一般化しているのが、三角関数で考えた一般の角度での加法定理です。単位円周上で考えれば、同様の図形的な位置関係を必ず作る事ができます。

三角比の範囲で考えた場合の cos(A+B)の図形的な解釈の1つです。三角関数の加法定理において角度部分を x → -x に置き換える操作は単に形式上そうできるというだけではなく、図形上の意味にも必ず対応しています。

具体例・応用例・覚え方

具体例についても見てみましょう。

例えば、90°=60°+30°、90°=45°+45°といった関係を加法定理は正しく表すでしょうか?

$$\sin\left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{6}\right)+\cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{6}\right)$$

$$=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{2}+\frac{1}{2}\cdot\frac{1}{2}=\frac{3}{4}+\frac{1}{4}=1$$

$$\sin\left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{2}\right)=1 で一致します。$$

45°のほうでやってみても同じで、

$$\sin\left(\frac{\pi}{4}+\frac{\pi}{4}\right)=\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right)+\cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}=\frac{1}{2}+\frac{1}{2}=1$$

こういう形で成立するわけです。

120°-60°=60°の場合を今度は余弦のほうでやってみると、

$$\cos\left(\frac{2\pi}{3}-\frac{\pi}{3}\right)=\cos\left(\frac{2\pi}{3}\right)\cos\left(\frac{\pi}{3}\right)+\sin\left(\frac{2\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$$

$$=-\frac{1}{2}\cdot \frac{1}{2}+\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{2}=-\frac{1}{4}+\frac{3}{4}=\frac{1}{2}=\cos\left(\frac{\pi}{3}\right)$$

加法定理が成立するなら、既知の三角関数の値を使って例えば45°-30°=15°といった半端な角度の正弦や余弦の値も分かるはずです。「15°」における正弦の値を加法定理で計算すると次のようになります。

$$\sin\left(\frac{\pi}{12}\right)=\sin\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right)-\cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\cdot\frac{1}{2}=\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}$$

この計算値は約 0.2588 で、マクローリン展開で計算した値にほぼ一致します。

45°+45°や60°+60°のような場合は、より一般的にAに対する2Aとして「倍角の公式」の形にして捉える事も可能です。和積の公式や積和の公式も、加法定理の幾つかの式を組み合わせて変形したものです。

三角関数の微分公式の証明でも、加法定理を使用して計算を進めます。

加法定理の式の形の「覚え方」としては、複素数を利用する方法もあります。【これらは「説明」や「覚え方」としては有用ですが「証明」にはならないので注意。】

複素数の場合、指数関数表示(オイラーの公式)からei(θ+φ)=eiθiφですが、
cos(θ+φ)+isin(θ+φ)=(cosθ+isinθ)(cosφ+isinφ)
=cosθcosφ-sinθsinφ+i(sinθcosφ+cosθsinφ)
を意味しますから、実部と虚部の値を比較すれば
cos(θ+φ)=cosθcosφ-sinθsinφ、sin(θ+φ)=sinθcosφ+cosθsinφ
の関係が成立している事が分かります。
これらは三角関数の加法定理の内容そのものです。

(これはド・モアブルの定理で考えても同じです。
ただし、その定理の証明に加法定理が使用されているので、「加法定理の証明」としては
適切とは言えないのです。)

外積を使った証明

加法定理の別の証明方法として、3次元ベクトルの外積(ベクトル積、クロス積)を使う方法があります。

外積ベクトルは3次元のベクトルに対して考えるものですが、z=0としたxy平面上の2つのベクトルに対して考える事は一応可能です。

そこで、次の2つのベクトルを考えます。
(角度θとφはプラスの値とします。ベクトルの大きさはどちらも1である事にも注意。)

$$\overrightarrow{a}=\cos\theta\hspace{2pt}\overrightarrow{e_1}+\sin\theta\hspace{2pt}\overrightarrow{e_2},\hspace{10pt}\overrightarrow{b}=\cos\phi\hspace{2pt}\overrightarrow{e_1}-\sin\phi\hspace{2pt}\overrightarrow{e_2}$$

$$\overrightarrow{e_1}=(1,0,0),\hspace{10pt}\overrightarrow{e_2}=(0,1,0),\hspace{10pt}(本当は\overrightarrow{e_3}=(0,0,1)もある。)$$

負の角度を使っても同じ事ですが、ここではプラスの値の角度の正弦にマイナス符号をつけた形で座標を表すとします。

そこで外積ベクトルを考えてみましょう。(外積について成立する公式を使用します。)

$$\overrightarrow{a}×\overrightarrow{b}=(\cos\theta\hspace{2pt}\overrightarrow{e_1}+\sin\theta\hspace{2pt}\overrightarrow{e_2})×(\cos\phi\hspace{2pt}\overrightarrow{e_1}-\sin\phi\hspace{2pt}\overrightarrow{e_2})$$

$$=-\cos\theta\sin\phi(\overrightarrow{e_1}×\overrightarrow{e_2})+\sin\theta\cos\phi(\overrightarrow{e_2}×\overrightarrow{e_1})$$

$$=-\cos\theta\sin\phi(\overrightarrow{e_1}×\overrightarrow{e_2})-\sin\theta\cos\phi(\overrightarrow{e_1}×\overrightarrow{e_2})$$

$$=-(\cos\theta\sin\phi+\sin\theta\cos\phi)(\overrightarrow{e_1}×\overrightarrow{e_2})$$

$$=(\cos\theta\sin\phi+\sin\theta\cos\phi)(-\overrightarrow{e_3})$$

他方で、この外積ベクトルは定義通りに考えれば向きは「z軸のマイナス方向」であり、
大きさは\(|\overrightarrow{a}||\overrightarrow{b}|\sin(\theta+\phi)=\sin(\theta+\phi)\) です。

という事は、

$$\overrightarrow{a}×\overrightarrow{b}=\sin(\theta+\phi)\hspace{2pt}(-\overrightarrow{e_3})$$

という事でもありますから、2つの結果を等号で結べます。

$$(\cos\theta\sin\phi+\sin\theta\cos\phi)(-\overrightarrow{e_3})=\sin(\theta+\phi)(-\overrightarrow{e_3})$$

$$よって、\sin\theta\cos\phi+\cos\theta\sin\phi=\sin(\theta+\phi)【加法定理の証明終り】$$

この場合は、正弦の加法定理が直接示されています。(証明の最後の箇所では見やすいように項の順番だけ入れ替えています。)これを使って残りの3式も証明が可能です。

ここで行った計算は一体何なのかというと、前半で記した証明が三角形の「辺の長さ」を考えたのに対して、この外積を使った証明では平行四辺形の「面積」(三角形でも可能)を使ったという事です。本質的には、座標を使って証明するという同じ部類の2つの証明法と言えます。

余弦定理

余弦定理とは、三角形の3辺と1つの角の余弦について成立する関係式です。
(英:cosine rule)

特別な場合として余弦定理を直角に対して適用すると三平方の定理の形になります。
(ただし、余弦定理一般を証明するには普通は三平方の定理を使います。)

三角比の余弦(コサイン)と三角関数の余弦関数については別途に述べています。

定理の内容

余弦定理の内容は次のようなものです。

余弦定理

三角形ABCの辺の長さをBC=a、AC=b、AB=cとして、
∠BAC=θ(長さaの辺BCの対角)とする時、次の関係式が成立します。 $$a^2=b^2+c^2-2bc\cos \theta$$ θは鋭角でも鈍角でも成立し、
θ が直角の時には三平方の定理a=b+cになります。
また、θ=0、\(\pi\)の場合は3点が1直線上に並んでいる場合であり、
座標上などで角度に向きをつけている場合には負の角度を代入しても正しい関係式を表します。

三角形のある1辺の具体的な値を知りたい時には「2辺の長さと1つの角度の『余弦』の値が分かれば計算は可能である」という事が、余弦定理の意味と使い方です。

定理の内容

余弦定理を証明する一番シンプルな方法は三平方の定理を使う方法です。(三平方の定理は相似条件・合同条件といった条件だけで証明できます。)

ここでは、対象の角の大きさが鋭角か鈍角で場合分けをして証明します。
式変形も含めてやや詳しく説明していますが、要するに三平方の定理を適切に適用すると関係式を導出できるというのが証明の流れになります。

証明①:鋭角の場合

まず対象の角度の大きさが鋭角の場合です。

この場合、もう1つの角についても鋭角か鈍角かで場合分けしますが、得られる結果は同じになります。どちらの場合でも、三角比の関係を使って上手に直角三角形の辺の関係を作ります。

下図で、∠BAC=θが鋭角のもとで、∠ABCが鋭角か鈍角かを見ます。

∠ABCが鋭角の場合(図の上側)、直角三角形を作るように線分ABを延長して点Hをとります。この時、直角三角形である△ACHの底辺部分AHの長さは余弦を使ってbcosθで表せます。

鋭角の場合の証明

他方、高さ部分もCH=hは正弦を使ってh=bsinθと表せますが、単純にこれに三平方の定理を適用してもじつはうまくいきません。そこで、△ACHだけでなく、△BHCも直角三角形である事に注目します。すると、BH=bcosθ-cになる事に注するとうまくいきます。

BH+h=a ⇔ (bcosθ-c)+h=a

他方、△ACHについてAH=bcosθ 、CH=hのもとで三平方の定理を適用します。

(bcosθ)+h=b ⇔ h=b-bcosθ

つまり、未知数のhは代入して消す事ができます。

(bcosθ-c)+h=a に h=b-bcosθを代入すると、bcosθ-2bccosθ+c+b-bcosθ=a
⇔ a=b+c-2bccosθ 【bcosθの項が消えてあとは順番だけ整理しただけです。】

つまりこの場合では余弦定理が確かに成立する事になります。

次に∠BAC=θと∠ABCが両方とも鋭角の場合(図の下側)には、点Cから辺ABに垂線を下ろせます。その垂線の足をHとおきます。この場合も先ほどとやり方自体は同じで、△AHCと△CHBの2つが直角三角形になり、CH=hとして余弦と組み合わせて三平方の定理で関係式を作ります。

AH=bcosθ、CH=h、BH=c-AH=c-bcosθ のもとで、

(bcosθ)+h=b かつ (c-bcosθ)+h=a 

前者のほうの式を後者のほうの式にhを代入して消します。
(c-bcosθ)+b-(bcosθ)=a ⇔ a=b+c-2bccosθ

よって、この場合でも余弦定理が確かに成立する事になります。

証明②:鈍角の場合

では、∠BACが鈍角の場合はどうするかというと、この場合には余弦に鈍角を入れる必要があるので三角関数として余弦を考える必要があります。結論を先に言うとcos(x+\(\pi\)/2)=-sinxの公式を使います。この関係を認めるうえで、余弦定理の形で辺の長さの関係を表せるという事です。

この時、鋭角である角度 φ を使って、θ = φ+90°と表すとこの時の証明はしやすいです。ただ、三角関数を使うので、ここで角度は弧度法で表してθ = φ+\(\pi\)/2と書く事にします。

この時、図のように△ABPが直角三角形になるように便宜上の点PをBC上において、∠ABPが直角、∠PBC=φ(鋭角)であると捉えます。(図の位置関係はθが鋭角の場合と少し変えて描いています。)

鈍角の場合の証明

ここで、θ=∠PBC+∠ABP=φ+\(\pi\)/2です。この時、ABを延長しCからその延長線に垂線を下ろして垂線の足をHとします。

平行線の錯角の関係により∠BHC=∠PBC=φである事に注意し、△BHCは直角三角形なのでBH=bsinφ、CH=bcosφと表せます。ここで△AHCも直角三角形なので三平方の定理で関係式を作ると次のようになります。

(c+bsinφ)+(bcosφ)=a ⇔ c+2bcsinφ+bsinφ+bcosφ=a

ここでまず、sinφ+cosφ=1の公式により
sinφ+bcosφ=b(sinφ+cosφ)=b

すると、c+2bcsinφ+b=a

「余弦」定理の証明なのに正弦が出てきてしまったという話ですが、cosθ = cos(φ+\(\pi\)/2)=-sinφ つまりsinφ=-cosθとなるので、a=b+c-2bccosθ となり、この場合も余弦定理が成立します。

これは三角関数の定義に従って余弦の値を決める時に成り立つもので、具体的な鈍角の値を余弦関数に入れると必ず負の値ですから、符号は必ず反転してプラスになる事に注意する必要もあります。

例えば120°(2\(\pi\)/3 [rad]) を角度として代入するなら、
=b+c-2bc・(-1/2)=b+c+bc のようになります。

理解の仕方としては、θが鋭角であろうと鈍角であろうと、三角関数の定義に従って余弦の値を考える限りは気にせずに余弦定理を使って計算をしてよい、という事になります。

角度の範囲が実数全体の場合

三角関数の定義域(実数全体)を当てはめるのであれば、上記以外の場合にはどうなるでしょう?

まず鋭角でも鈍角でもない角度として「直角」がありますが、これは冒頭でも触れた通り三平方の定理そのものになりますので、別途に証明できて成立します。

次に、0と180°(\(\pi\))の場合ですが、仮に成立するとすると次のような式になります。

θ=0とき、a=b+c-2bc=(b-c) より、a=b-cまたはc-b

θ=\(\pi\)のとき、a=b+c+2bc=(b+c) より、a=b+c

(もちろん、a≧0、b≧0、c≧0という条件のもとでこうなります。)

問題はこれに図形的な意味があるかという事ですが、じつは確かにあります。これらはいずれも、3点A、B,Cが一直線上に並んだ時にあり得る関係式です。そのため、これらの角度においては「三角形はできない」という図形的な意味付けをするのであれば、各点間の距離を表す式として余弦定理は確かに成立すると言えます。

一般の角度の場合
余弦定理を使う時には、通常の平面幾何的な意味では0°<θ<180°の範囲だけを考えればよいのですが、図形的な意味を拡張してそれ以外の値を代入する事も可能です。

では、180°(\(\pi\))を超える場合はどのように考えられるでしょう。この場合、三角関数の考え方では負の角度が0~-\(\pi\)の場合と同じなので負の角度の場合を考えると、余弦関数の値はマイナス符号をつけない正の値の時と同じ値です。cos(-θ)=cosθと、三角関数では定義されます。

このような場合に図形上での意味としては、座標やベクトルの関係において角度に反時計回り・時計回りの区別をつける時の事が想定できます。しかしその場合でも「2点間の距離」自体は正の値として考えます。例えば座標上でx軸に平行な直線に関して図形を反転させた場合に、座標の符号が変わる事はあっても各点を結ぶ辺の「長さ」自体は変わりません。

この事が、負の値を角度として適用した場合の図形的な意味になります。0≦θ≦\(\pi\) の場合には余弦定理は適用可能ですから、-θを考えた時には cos(-θ)=cosθ により角度が正の値の時と全く同じ辺の長さの関係式になります。これが、「底辺を軸として三角形を反転させた時にも辺の『長さ』自体については変わらない」事に対応するのです。この意味において、座標上などで角度に向きをつける場合でも、辺の長さの関係だけを問題にする時には余弦定理に負の角度を入れても正しく関係式を作れるという事です。

★言い換えると、余弦定理だけからは「正負の符号も含めた」意味での座標の位置関係を確定させる事はできず、基本的には長さについてのみ計算可能な関係式であるとも言えます。これは三平方の定理と同様の性質です。

\(\pi\)を超える角度の図形的な意味は負の角度の場合と同じとすると、これも余弦定理の角度部分に代入しても三角形の辺の長さの関係は正しく表されている事になります。

三角関数の周期性により、360°(2\(\pi\))を超える角度では1周して全く同じ点に戻るという図形的な解釈のもとでは、それらの角度を代入したとしても同じく三角形の辺の長さの関係は同じく正しく表されます。

以上から、余弦定理は一般的な鋭角、鈍角、直角の三角形を考える場合にも、図形上の適切な意味付けを与える限りにおいては実数全体を余弦の角度として代入しても成立する関係式である、という事になります。

正弦定理

正弦定理は、三角形の辺の長さおよび外接円の半径(あるいは直径)と、三角比の正弦の間に成立する関係式です。(英:sine rule)

三角比を使うという事で高校で教えられる事が多いですが、内容としてはどちらかというと平面の図形問題の色彩が濃く、中学校で教わる平面幾何の内容に近いかもしれません。

定理の内容

定理の内容は次の通りです。

正弦定理

三角形ABCでBC=a、AC=b、AB=cとして、
それらの対角の大きさについて∠BAC=A、∠ABC=C、∠ACB=Cとします。
また、△ABCの外接円の半径をRとすると、次の関係式が成立します: $$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$

このように1つの式で表されていますが、2つのグループに分かれていると考える事もできます。1つは辺の長さと正弦の関係、もう1つは辺の長さと正弦と外接円の半径の関係です。(後者については証明を見ると分かるように図形上の意味として肝心なのは「直径」との関係です。)

ここでは2つの部分に分けますが、2つ目のほうを使って最初から全て証明する事も可能です。

証明①:三角形の辺と正弦に関する部分

まず、1つ目の辺の長さと正弦の関係です。
定理の中で言うと、とりあえず外接円の部分は無視した次の部分になります。

$$まずこれを証明します:\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$

2つの等号に関して一度に示す事はできないので、1つずつ証明して最後に全部を結ぶという形になります。

これは、一言で言うと、三角形ABCの「面積」を3通りの方法で表してみると成立する事が分かる関係式です。本来の「面積」の形の等号関係は次のようになります。

$$\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}$$

発想はじつに単純で、三角形の面積「底辺×高さ÷2」において、底辺を辺AB、BC、ACのそれぞれとした場合に面積の計算をしてみようという、それだけのものです。

★細かい事を言いますと、厳密にはその場合に「どの辺を底辺にとったとしても1つの三角形の『面積』は1つの値しかとらない」という事も自明ではなく要証明です。
しかしその事は平面幾何で証明済のものとして、ここでは話を進めます。
(三角形の相似関係を使えばよく、証明するとしてもそれほど難しくはありません。)
また、証明の順番は逆になってしまいますが、正弦定理の後半部分を先に証明すればこの面積に関する事項も証明する事はできます。どの方法でも間違いではありません。

面積による証明

まず。底辺をAC=aとした時です。面積を出すには高さが必要ですが、これを三角比の関係を使って表します。AB=cの斜辺と∠ABC=Bの正弦によって、高さはcsinBになります。これで、面積の1つが表されるわけです。

$$S=\frac{ac\sin B}{2}$$

この時、∠ABC=Bとは逆側の角度を使って、高さの部分をbsinCと表す事もできます。
これは、あとで使います。
最初からそちらのほうだけで面積を表すとどうなってしまうのかというと、じつはa(bsinC)÷2=b(asinC)÷2の関係により、「bを底辺とした場合に表わした三角形の面積」に等しい事になります。そのため、最初からこちらの式を使って進めても結局証明はできます。

底辺をAC=bの部分とみなす場合には、高さがcsinAになります。これで面積の2つ目の表し方です。

$$S=\frac{bc\sin A}{2}$$

ここで、いったん2つの式を等号で結びます。
もちろん、同じ面積Sを表すので等号で結べます。

$$\frac{ac\sin B}{2}=\frac{bc\sin A}{2}$$

この式で、両辺でcと1/2は共通しているので掛け算割り算で「消せる」事になり、さらに正弦の部分を両辺で割ると正弦定理の関係式の1つになります。

$$\frac{ac\sin B}{2}=\frac{bc\sin A}{2}\Leftrightarrow a\sin B=b\sin A$$

$$\Leftrightarrow\frac{a}{\sin A}=\frac{b}{\sin B}$$

ここでもう1つ関係式がほしいわけですが、∠ACB=Cに関する正弦が足りないので、再びBC=aを底辺とする場合に戻って、高さを今度はbsinCと考えます。

$$するとS=\frac{ab\sin C}{2}とも表せる事により、\frac{ab\sin C}{2}=\frac{bc\sin A}{2}$$

$$\Leftrightarrow\frac{a}{\sin A}=\frac{c}{\sin C}$$

これで2つの等号関係を結べます。

$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}【証明終り】$$

理解の仕方としては、図を見てもっと単純に直観的にという事でもよいと思います。

証明②:外接円に関わる部分

次に、正弦定理の内容のうち、外接円の半径を含むほうの部分です。

一体どこから円が関係するのかと思われるかもしれませんが、じつはこの後半部分のほうが、図形的な特徴に気付くと直ちに証明されるので簡単なのです。

この場合には面積を考える必要はなく、三角比の関係だけを使います。

まず外接円を考えるのですが、この時に三角形の1つの頂点から「円の中心を通るように」直線を引きます。それが円周の向かい側とぶつかる点に注目します。

図では、点Cから中心に向かって直線を引き、円周との交点をA’ としています。

円周角の定理による証明
△ABCの外接円の半径をRとしています。補助線を引いて点A’ を円周上にとります。

すると、まず円周角の定理により、新しくできた図の∠CA’Bの大きさは∠CAB=Aと同じ大きさです。(弧CBの円周角なので。)よって∠CA’B=Aです。

また、図のCA’ は円の直径ですから、その円周角について∠A’BC=90° となります。(これも本質的には円周角の定理によるものです。)

という事は、Aという大きさの角を含む直角三角形を考える事ができます。斜辺は円の直径(2R)で、辺BCの長さがaですから両者を三角比の関係で結べます。じつは、これで1つの関係の証明が終りです。

$$三角比の関係により、2R\sin A=a\Leftrightarrow \frac{a}{\sin A}=2R$$

同様にして、頂点Aや頂点Bからも補助線を中心に向かって引く事で残り2つの関係式も得られますが、a/(sinA)=b/(sinB)=C/(sinC)を既に証明しているので、これで正弦定理の証明完了としても可です。

$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}と合わせて、\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R【証明終り】$$

★こちらのほうの定理の後半の内容について最初に証明する事で前半部分も一度に証明する事もできます。
その場合には頂点と中心を通る補助線を3パターン全て作って、
a/(sinA)=2Rかつb/(sinB)=2RかつC/(sinC)=2Rよりa/(sinA)=b/(sinB)=C/(sinC)であるとして、定理の前半部分もまとめて証明できます。
手間としては、どちらの方法でもあまり変わらないと思います。

この記事では証明を詳しく記しましたが、理解としてはもっと直感的でよいと思います。

さてこの「正弦定理」、別途に「余弦定理」というものがあるので対として教科書の中で教えられる事も多いのですが、大学入試での出題の可能性を除くと重要度はやや低いものがあるかもしれません。

証明の方法から見ても分かる通り、正弦定理とは本質的には三角形の面積に関する平面幾何の基本事項や、円周角の定理から直結する関係式です。そのためこの定理は直接的というよりは、三角形に関わる多くの事項と間接的に関わっているものと言えるかもしれません。

弧度法とラジアン

弧度法とは、半径1の円の円弧の長さ(扇形の周部分)によって角度を表す方法を言います。
基本的には、円周率の有理数倍によって使って表す事が多いです。

弧度法で表した角度には単位をつけない事も多いですが、「ラジアン」[rad]という単位を記す事もあります。(英:radian)

定義・考え方と重要ポイント

弧度法は次のように定義され、度数法との換算の仕方も合わせて記すと次のようになります。

弧度法とラジアン

半径1の円の円弧の長さが Y 、その円弧を得る扇形の中心角の大きさが度数法で X ° である時、
円弧の長さ Y を角度そのものとして扱う方法を弧度法と言い、
特に単位をつける場合には rad (ラジアン)を使う。
Y [rad] と X [°]の換算については次の関係が成立する:
$$Y=\frac{\pi X}{180}=\frac{2\pi X}{360}$$

この角度の表し方の詳しい意味と、換算の式の出し方についての易しい説明を以下にしていきます。

円周の長さは直径と円周率の積です。この時に半径(および直径)が一定であれば円周の長さも一定です。

円周と半径の関係 円の半径をrとすれば円周の長さは2\(\pi\)r
(円周の長さ)=(直径)×(円周率)という事です。

まず、簡単な例として「半円」を考えてみましょう。これの「弧」の長さを考えます。
当然ながら、半円の弧の長さは「全体の円周の長さの半分」です。
1/3円であれば弧の長さも1/3です。1/n円であれば弧の長さは全体の1/nです。

ところで一般の扇形の面積や円弧部分の周の長さを考える時は、例えば中心角が60°の扇形は、
全体に対して60/360=1/6 の割合の面積や弧の長さを持つと判定するのでした。
全体を360°として、60°という部分を考えています。
これは、角度が分かっているので円弧の長さも分かるというわけです。

そこで、弧度法の基本的な考え方は次のようなものです。

「逆に、『弧の長さ』が仮に分かってるとすれば『角度』も確定するではないか?」

半径1の円の60°の扇形の弧の長さは\(\pi\)/3ですが、言い換えると弧の長さが\(\pi\)/3であれば
角度も「全体を6分割する」大きさである事は確定しているというわけです。

度数法の場合は360°に対して何度を比較しますが、弧度法では半径1の円の全体の円周の長さ2\(\pi\)に対して、扇形の弧の長さを比較するのです。

この観点では角度を「全体の何割なのか」という視点だけで考えているとも言えます。

考え方の説明図

換算の式の考え方と導出

弧度法と度数法の換算については、冒頭で記しましたように一応の「公式」はありますが、
基本的には部分が全体の何割かという事を考えているだけなのです。

例えば直角であれば全体の1/4ですから度数法であれば90°、
弧度法なら2\(\pi\)の1/4の\(\pi\)/2であるというわけです。
360/4=90、2\(\pi\)/4=\(\pi\)/2という計算です。
(あるいは半円の半分と考えて180/2、\(\pi\)÷2)

そもそも度数法にしても360という数字について、数学的に絶対にこの値でないと支障があるのかというとそうではありません。例えば極端な話、倍の数字の720を全体としてもよいのです。角度を測るツールとしては何でもよいわけです。その事に気付くと、弧度法というのは全然難しいものではないのです。

とすると、弧度法と度数法の換算も、全体の何割かを把握している事が本質であるわけです。この時、必要に応じて直角や2直角の何割かという事を考えたほうが計算は早い場合はあります。

例えば30°であれば、2直角180°の1/6ですから、弧度法だと半径1の半円の弧の1/6、つまり\(\pi\)/6に等しい角度という事です。

同じく45°なら2直角の1/4なので、弧度法だと\(\pi\)/4です。
前述の90°なら直角ですから弧度法では\(\pi\)/2と直ちに考える事もできます。

120°のような場合は、2直角の2/3ですから(60°の2倍)、弧度法では2\(\pi\)/3なのです。

このように考えると、じつに簡単なものである事に気付くと思います。

37°のような半端な角度の場合も考え方は同じなのです。要するに、全体の何割かを考えればよいのです。90°未満の角度の場合は180°に対する割合を考えたほうが簡単でしょう。
すると、この角度を弧度法で表すなら \(\pi\) の37/180倍です。$$37°は、弧度法では\pi\cdot\frac{37}{180}=\frac{37\pi}{180}になります。$$

これが、弧度法と度数法の換算の式の意味です。改めて記すと次のようになります。

弧度法と度数法の換算の公式 度数法で X ° の角度を弧度法の Y [rad] で表す場合、関係は次式になります。
$$Y=\pi\cdot \frac{X}{180}=\frac{\pi X}{180} $$ $$もちろんこれは Y=\frac{2\pi X}{360}としても同じです。$$ 逆に弧度法で表された角度 Y [rad] によって度数法の X ° は次のように表されます。
$$X=180\cdot \frac{Y}{\pi}=\frac{180Y}{\pi}$$ $$これはX=360\cdot \frac{Y}{2\pi}=\frac{360Y}{2\pi}としても同じです。$$
角度の換算の式の説明図

この考え方が分かっていると、仮に次のような意地の悪い問題が大学入試(センター試験等)で仮に問われたとしても迷わないでしょう。

■問い:「弧度法の1ラジアンを度数法で表すならいくらか。」

そもそも円周率は無理数なのだから弧度法の角度をわざわざ有理数である「1」で表す意味があまり無いとも言えるのですが、この手の問題では理解度を試すためにわざと問うているという事でしょう。

1ラジアンですから、2直角に対する割合は1/\(\pi\)です。
したがって解答は、180×(1/\(\pi\))=180÷\(\pi\) ≒ 57.3 [°] です。【解答】

考え方としては\(\pi\)/4ラジアンが2直角\(\pi\)に対する1/4、
あるいは直角の半分だから「45°」と判定する事と同じなのです。

一般の円の円弧の長さ・扇形の面積との関係

さて、弧度法で表した角度は「半径1」の円の円弧の長さです。

あくまで半径1の場合ですから、別の半径であれば円周の長さも面積も変わります。

しかし、円周の長さは「半径(あるいは直径)に比例する」のでしたから、
仮に弧度法で表された角度が分かっているのであれば、一般の扇形の円弧の長さは「弧度法の角度[rad]を半径倍したもの」という事になります。

これは、「半径Rの扇形の円弧の長さ」=「『半径1の扇形の円弧の長さ』× R」という簡単な関係なのです。

この意味において、次の公式が成立します。

一般の扇形の円弧の長さ 半径 R の扇形の中心角について弧度法での角度 θ [rad] が分かっている時、
円弧の長さ L は次のように表されます。
$$L=R\theta$$ ★基本的には角度 θ [rad] は、例えば\(\pi\)/4のような形で判明しているという事に注意しましょう。
つまり、決して「円周率が消えている」という事ではありません。
弧度法での角度があらかじめ分かっているとは、基本的には、あくまで全体に対する何割の扇形であるかが判明しているという意味です。確かに仮に弧度法の角度を無理やり有理数で表せば見かけ上円弧の長さから円周率が消えますが、これは円周全体に占める比を有理数で表せないという「長さ」になってしまうのです。

面積についても考え方は同様です。

半径1の円の面積は1×1×\(\pi\)=\(\pi\)で、
弧度法の角度が θ であれば θ/(2\(\pi\)) の割合が扇形の面積です。

$$半径1の扇形の面積:\pi\cdot\frac{\theta}{2\pi}=\frac{\theta}{2}$$

ここで1/2というのが出てくるのは、円周の長さは直径と円周率との積、円の面積は半径の2乗と円周率との積で、弧度法の角度は円周と円弧の関係を表すものなので直径と半径のずれがあるためです。

扇形の半径がRに変わった時には面積はさらにR倍になります。

その意味において次の関係式が成立します。

一般の扇形の面積 半径 R の扇形の中心角について弧度法での角度 θ [rad] が分かっている時、
扇形の面積 S は次のように表されます。
$$S=\frac{R^2\theta}{2}$$ ★ここで再び、円周率は基本的には弧度法で表された角度に含まれているのです。
分母の2がつくのかつかないのか分からなくなった時には、半径1の2\(\pi\) [rad] を考えてみるとよいでしょう。この時の扇形は円そのものですから、面積は\(\pi\)です。上記の式に代入しても同じ結果になる事が分かります。

三角関数の変数としての角度は弧度法で表すのが基本です。特に三角関数の微積分を考える時には、度数法を使うと問題が発生するので必ず弧度法の角度を変数として扱います。

一般角の定義と使い方

三角関数とは、図形上の三角比である正弦、余弦、正接の角度部分を拡張して定義域を実数全体に広げた正弦関数余弦関数正接関数を言います。(正接関数は \(\pi\)/2の奇数倍を定義域から除きます。 )
三角関数の変数は「実数値」であり、度数法ではなく弧度法で表します。(※度数法のまま三角関数を扱っても支障はない場合も多くあります。ただし微積分を扱う時には特に問題が発生するので注意も必要です。)

表記方法自体は三角比の場合と同じで、変数部分の記号としてxを使う事が多いです。
正弦関数 y=sinx 余弦関数 y=cosx 正接関数 y=tanx

三角関数は、代表的な周期関数の1つでもあります。これは、同じ関数の値が等間隔の変数ごとに繰り返し現れるというもので、「1回転」\(2\pi\) ごとの周期性を示します。(比例係数を使う事で、その他の値の周期とする事もできます。)

指数関数や対数関数と同じく、高校で扱われる重要な関数である初等関数の1つです。

三角比との違いは、数学的に厳密な違いが定義されているわけではありませんが、三角比というのはどちらかというと平面の図形に対して0°~180°の範囲で適用するものであって、三角関数は図形問題というよりは周期関数としての性質を強調して使う事が多いです。

定義域の拡張・・角度を拡張する

三角関数の考え方は大体において三角比と同じ考え方を適用できますが、正弦関数等の変数は実数全体です。この場合、単純な直角三角形の角度としては変になる場合はどのように解釈するのか?を説明します。
基本となるのは正弦関数と余弦関数なので、まずはそれらについて見ていきます。
(正接関数についてはそれらの割り算で表されます。)

「0度」と負の角度 ■ \(\pi\)/2【90°】以上の角度 ■ 2\(\pi\)【360°】以上の角度【周期性】 

「0度」と負の角度

直角三角形の直角以外の部分の角度は、「もちろん0°より大きく90°より小さい範囲」です。
弧度法だと 0 < x < \(\pi\)/2です。そうでないと三角形ができないためです。
しかし三角関数では、この変数の範囲(定義域)を拡張していきます。

まず変数が0以下の場合はどうするのでしょうか?結論を言うと次のようにします。

変数が0以下の場合の三角関数
  1. sin 0 = 0, sin(-x)=-sinx と定義する。
  2. cos 0 = 1, cos(-x)= cosx と定義する。
  3. tan 0 = 0, tan(-x)=-tanx となる。【tanx=(sinx)/(cosx)と定義するため。】

ここでx>0であれば-xは負の値で、x<0であれば-xは正の値です。
後述しますがどちらの場合でも統一的にこれらの関係式を適用できます。

これは図で言うと、三角形を底辺に関して対照的にひっくり返したものを考えて「負の角度」としています。角度の方向にも向きを付けて、反時計回りをプラス、時計回りにはマイナスの符号をつけるという意味です。
そのうえで正弦については「下向き」の高さ、余弦については変わらず同じ値と決めています。

負の角度

まずx=0の場合には次のようにしていす。

角度0の場合の定義

x=0とした時の y=sin x と y=cosx の値の定義です。

  • 正弦関数の場合:sin 0 =0 と定義する。
  • 余弦関数の場合:cos 0 =1 と定義する。

これらは「定義」であるとしか言いようがない面もありますが、「なめらかな形の連続関数」になるような定義としての1つの要請であるとも言えるのです。
三角比の範囲においても、角度を0に近づけると正弦の値は0に近づき、余弦の値は1に近づいていくのでx=0において sin 0 = 0, cos 0 = 1 であれば、その「点」において関数は「連続」になるという事です。さらにそこから、なめらかな形で負の部分に続いていく事も考えます。(微分可能になるように。)

また、周期関数になるという要請も加えると、定義の仕方も段々と限定されてくるわけです。意味としては、三角関数における「角度」の拡張の定義にはそのような意味があると捉える事ができるのです。
直交座標上にxを変数とした三角関数のグラフを描くと、ちょうどx=0で正弦関数は原点に対して点対称、余弦関数はy軸に関して軸対称の形になります。

負の角度

ここでは表記としてはxがプラス符号であるとして、それにマイナスをつけた「-x」を負の数として扱っています。

  • 正弦関数の場合:sin(-x)= -sinx【0から始まり-1に向けて関数の値は減少していく】
  • 余弦関数の場合:cos(-x)= cosx【1から始まり0に向けて関数の値は減少していく】

$$例えば\hspace{10pt}\sin\left(-\frac{\pi}{4}\right)=-\sin\frac{\pi}{4}=-\frac{1}{\sqrt{2}},\hspace{10pt}\cos\left(-\frac{\pi}{4}\right)=\cos\frac{\pi}{4}=\frac{1}{\sqrt{2}}$$ 正弦の場合と余弦の場合ともに、符号の関係にだけ注意すればよいという事になります。
値の絶対値については変数がプラスの場合のものをそのまま流用するという定義であるからです。
正弦の場合「0から減少していく」、余弦の場合「(最大値)1から減少していく」事を考えると理解はしやすいと思います。

尚、ここでは sin(-x)= -sinx において「xは正の値」を考えて変数が負の場合の説明をしましたが、
そこでx自体に「負の値」・・例えば-\(\pi\)/4を入れたとすると$$\sin\left\{-\left(-\frac{\pi}{4}\right)\right\}=\sin\frac{\pi}{4}=-\left(-\sin\frac{\pi}{4}\right)=-\sin\left(-\frac{\pi}{4}\right)$$となり、式の整合性はとれています。余弦関数の場合も同様に整合性がとれます。つまり一般的に、変数部分にマイナス符号がついている時には、上記の定義式の関係を使って機械的に計算してもよいという事です。

\(\pi\)/2【90°】以上の角度

では、変数がプラスの値の時に戻って、変数が\(\pi\)/2以上の場合はどうするのでしょう?
通常の図形問題でも90°以上の角度は考えますが、直角三角形の直角にはそのままでは適用できません。

三角関数において、定義域を\(\pi\)/2以上に拡張する場合は次のようにします。

変数が\(\pi\)/2以上の場合の三角関数
  1. sin(\(\pi\)/2) = 1, sin(x+\(\pi\)/2)=cosx と定義する。
    【sin\(\pi\)=0, sin(3\(\pi\)/2)=-1, sin 2\(\pi\)=0 になる。】
  2. cos(\(\pi\)/2) = 0, cos(x+\(\pi\)/2)=-sinx と定義する。
    【cos\(\pi\)=-1, cos(3\(\pi\)/2)=0, cos 2\(\pi\)=1 になる。】
  3. tan \(\pi\) = 0, tan(x+\(\pi\)/2)=-1/(tanx) となる。
    【tanx=(sinx)/(cosx)と定義するため。】
    mを整数として tan(\(\pi\)/2+m)は、定義しない!【無限大を避けるためです。】

ここで正弦と余弦についてはxは実数のうち何の値でもよく、負の数や直角を超える値を入れたとしても整合性がとれた定義式になっています。
正接のほうについては、余弦関数の値がゼロになる変数の値は全て「穴」になるような形で定義域から除外する形で考えるという事です。ですから例えば tan(x+\(\pi\)/2)=-1/(tanx) においてはxの値として\(\pi\)の整数倍の時は除外する、という具合に考えます。

また、正弦関数と余弦関数については次式も成立し、これを使うと計算上便利です。

公式
  1. sin(x+\(\pi\))=-sinx, sin(\(\pi\)-x)=sinx
  2. cos(x+\(\pi\))= -cosx, cos(\(\pi\)-x)=-cosx

これらは式としては統一的にまとめる事もできますが、図形的な意味としては別々に捉える事も1つの方法として便利である場合があります。正接関数についても同様の式を作る事は可能です。

さて、この定義を見ると角度が負の場合と比較して、かなり複雑であるようにも見えます。
この場合もやはり式だけで考えるのではなく、図形的に考えたものを式で表現するなら上記のようになると理解すべきでしょう。

変数が直角を考える場合には、今度は直角三角形の高さ部分の辺に関して対照的になるようにひっくり返すのです。この場合も、関数の値の絶対値は直角未満の場合の三角比の値を流用して符号だけをいじるという定義の仕方をします。

90°を超えて180°未満の「鈍角」の範囲における三角関数の具体的な値を調べる時には、鈍角を「180°-鋭角」と考えるか、「90°+鋭角」と考えるかの2通りの計算で便利なほうを使うのが普通です。

鈍角の場合①
鈍角を「180°-鋭角」と捉える場合の三角関数の値の計算方法です。
鈍角の場合②
鈍角を「鋭角+90°」と捉えた場合の三角関数の値の計算方法です。こちらは、通常の三角比の場合に成立する公式を利用して式変形で考える事も可能です。

尚、式として考える場合、「90°+鋭角」の鋭角部分をマイナスにしてさらに90°加算する事で
「180°-鋭角」の三角関数の値の式を導出する事も一応可能です。次のようにします。

$$\sin\left(\pi-\theta\right)=\sin\left(\frac{\pi}{2}+\frac{\pi}{2}-\theta\right)=\cos\left(\frac{\pi}{2}-\theta\right)=-\sin(-\theta)=\sin\theta$$

$$\cos\left(\pi-\theta\right)=\cos\left(\frac{\pi}{2}+\frac{\pi}{2}-\theta\right)=-\sin\left(\frac{\pi}{2}-\theta\right)=-\cos(-\theta)=-\cos\theta$$

変数の値が2直角、つまり\(\pi\)の時には正弦関数の値は0、余弦関数の値は-1です。これは定義として捉えてもよいですし、上記の sin(x+\(\pi\))=-sinxから導出するという形でも同じです。これらも、意味としては関数の増減との対応・周期性・なめらかな連続性を満たす要件として考える事ができます。

さらに変数が\(\pi\)を超える場合には負の角度の時のように底辺に関して対照的にひっくり返します。この場合は、sin(x+\(\pi\))=-sinx, cos(x+\(\pi\))= -cosx の関係式を使うと把握しやすいでしょう。図を見ながら、図形的に捉えましょう。

点対称になる場合と周期性
角度が2直角を超える場合には、座標上で言う第3・第4象限に三角形を配置する形になります。この時には原点に対して点対称になる三角形を考えて符号を反転するだけと考えると計算が簡単な場合が多いでしょう。

さらに角度の値を大きくすると、今度は再び高さ部分に関してひっくり返り、座標軸上で言うと第4象限の位置に配置された三角形を考える事になります。

2\(\pi\)【360°】以上の角度【周期性】

角度を増やして、4直角、つまり360°に達し、それを超えた場合はどうなるでしょう。

この場合は、sin(x+\(\pi\))=-sinx, cos(x+\(\pi\))= -cosx の関係式の変数にもう一度 \(\pi\) を加えるのです。

すると、再度符号が反転して sin(x+2\(\pi\))=sinx, cos(x+\(\pi\))= cosx となり、
もとの sinx および cosxになる事を導出できます。

これが三角関数の周期性と呼ばれる性質で、以降、角度をどれだけ増やしても延々と周期的に値を繰り返すという事です。これは正接関数についても成立します。

三角関数の周期性 次のように、三角関数は2\(\pi\)ごとに同じ値を繰り返します。
  1. sin(x+2\(\pi\))= sinx
  2. cos(x+2\(\pi\))= cosx
  3. tan(x+2\(\pi\))= tanx

この周期性は、マイナスの向きに角度を減らした場合にも適用できます。つまりマイナス方向にもプラス方向にも、実数全体にわたって2\(\pi\)の周期性があるという事です。

sin(x+2\(\pi\))=sinxの関係から、sin(2\(\pi\)-x)=sin(-x) となり、余弦関数の場合も同様です。これは図形的に見ると、同一の頂点に相当する部分に至る角度を反時計回り(プラス)で測っても時計回り(マイナス)で測っても三角関数の値は同じである事を意味します。

尚、sin2xのような関数を考える場合には、周期性は sin(2x+2\(\pi\))=sin2xのようになります。
するとこの場合には、xに着目するとsin(2x+2\(\pi\))=sin2(x+\(\pi\))のようになりますから、xの変化としては周期は\(\pi\)ごとに発生する事になるのです。xは\(\pi\)だけ変化すれば三角関数の変数全体では2\(\pi\)の変化になるので、それだけで周期が1サイクルしてしまうという事です。
グラフ上では通常の正弦関数よりも「密」になった波の形になります。

単位円による定義方法

さて、以上の三角関数の定義と性質を見ると、式だけで覚えるのは大変複雑で、図形的に見るとそれほど難しい理屈ではない事が分かると思います。

上記の図でもところどころに描いていますが、じつは三角関数を把握するには円を描くと便利です。(三角関数の別名を「円関数」とも言います。)

この円は、原点を中心とした半径を1にした円で、単位円と呼ばれます。

すると、斜辺の長さに相当する「半径」が1ですから、角度の取り方は前述の方法と同じであるとすると、
円周上の点のx座標は余弦関数の値、y座標は正弦関数の値になるのです。

この単位円による方法でも適切に三角関数の値を出せるので、これを定義にしてしまうやり方もあります。

単位円による三角関数の定義

直交座標上の原点を中心とする半径1の円周上の点(X,Y)を考えて、
(1,0)から測った円周の長さ(弧度法の角度に等しい)をxとします。この時、

  1. X=cosx すなわち余弦関数と定義する
  2. Y=sinx すなわち正弦関数と定義する
  3. 正接関数は tanx=(sinx)/(cosx) で定義する

各三角関数には2\(\pi\)の周期性があり、
角度は反時計回りをプラス符号、時計回りをマイナス符号として区別するものとします。

単純な覚えやすさと使いやすさに関しては、この単位円による方法は非常に優れています。

欠点があるとすれば、三角比の拡張として唐突に「円」を持ち出すと、やはり少しばかり飛躍を感じさせるのも事実だと思います。最初から単位円による定義で教え込まれてしまうと結局「わけもわからずに」暗記するだけ・・という事になりがちです。

単位円による定義
単位円を使った三角関数の定義は、覚え方や計算の便宜としては非常に優れています。

重要な公式まとめ

三角関数の公式としては、簡単に4つのグループに分けると次のようなものがあります。

  1. 三角比についても適用できる公式
  2. 定義域を拡張した三角関数に特有なもの(例えば周期性)
  3. 正弦定理と余弦定理
  4. 加法定理と、それから派生する公式

まず、三角比についても成立するいくつかの公式は、三角関数でも成立します。これは三角比範囲の角度でのみ成立するのではなく、負の角度や直角以上の角度を代入してもきちんと成立するところが便利です。

三角関数の公式①

次式は三角比について成立しますが、
定義域を実数全体とする三角関数においても成立します。 $$\tan x=\frac{\sin x}{\cos x}$$ $$\cos^2 x+\sin^2 x=1$$ $$\cos \left(\frac{\pi}{2}- x\right)=\sin x$$ $$\sin \left(\frac{\pi}{2}- x\right)=\cos x$$ $$\tan \left(\frac{\pi}{2}- x\right)=\frac{1}{\tan x}$$ 角度についてはここでは弧度法で記しましたが、単純な図形問題にこれらを適用する際には角度を度数法で記しても大きな問題は普通は起きません。

これらの証明は三角比の説明のところで詳しく記しています。

周期性も含めて、三角関数特有の公式・性質も整理しておきましょう。
前述の通り、式だけで覚えるのではなく図形的に理解して覚えるとよいと思います。

三角関数の公式②

これらは特に三角関数において成立する関係式です。 $$\cos \left(\frac{\pi}{2}+ x\right)=-\sin x$$ $$\sin \left(\frac{\pi}{2}+ x\right)=\cos x$$ $$\sin(-x)=-\sin x\hspace{20pt}\cos(-x)=\cos x$$ $$\sin(\pi +x)=-\sin x\hspace{20pt}\cos(\pi +x)=-\cos x$$ $$\sin(\pi -x)=\sin x\hspace{20pt}\cos(\pi -x)=-\cos x$$ $$\sin(2\pi +x)=\sin x\hspace{20pt}\cos(2\pi +x)=\cos x$$ 最後の関係式については周期性と呼ばれる事は前述した通りです。
正接関数については、全てtanx=(sinx)/(cosx) の関係から公式を作る事ができます。

図形的に三角形に対して成立する公式で三角関数を使うものには、正弦定理余弦定理というものがあります。(余弦定理のほうがどちらかというと重要かと思います。)それらは基本的には三角比に対して成立しますが、角度として鈍角や直角を適用する場合には三角関数の定義を使用すると図形的な対応もうまくとれるという具合になります。図形的な対応さえきちんとつけるなら、余弦定理に関しては全実数の範囲の角度を適用しても成立します。

三角関数の公式③ 図形的な定理
  1. 正弦定理:三角形の辺a、b、cの対角の大きさをそれぞれA,B、C、三角形に外接する円の半径をRとすると
    a/sinA=b/sinB=c/sinC=2R
  2. 余弦定理:三角形の辺a、b、cと、辺aの対角の大きさAについて次の関係が成立する。
    a=b+c-2bccosA
    【特にAが直角の時は三平方の定理そのもの】

また、三角関数の加法定理というものがあって、これは複素数の理論の一部を構成しており、微積分のほうで計算を進めるために使う事もあるので三角関数の公式の中では重要な部類に入ります。
また、この加法定理から派生するいくつかの小さなグループの公式として積和の公式・和積の公式・倍角の公式と呼ばれるものもあります。それらは本質的にはもともと加法定理そのもので、少し式変形をして形を変えたものになります。

三角関数の公式④ 加法定理

2つの角度の大きさ A, B に関して次式が成立します。

  1. sin(A+B)=sinAcosB+cosAsinB
  2. sin(A-B)=sinAcosB-cosAsinB
  3. cos(A+B)=cosAcosB-sinAsinB
  4. cos(A-B)=cosAcosB+sinAsinB
sinAcosB などは、sinA と cosB の積です。
正接関数についても、tan(A+B)=sin(A+B)/cos(A+B) の計算によって加法定理の公式を作る事が可能です。

この他に、高校数学では必要ありませんが、三角関数を使った無限級数によって周期関数を解析する技法があります。そこでも三角関数の基本的な性質や公式は前提として話が進められる事も多いので、基礎事項をよく知っておくと後々の学習が進めやすい事もあろうかと思います。

三角比と三角関数の定義および公式

三角比とは直角三角形の2つの辺の比の事で、どの2つの辺を考えるかによって
正弦(「せいげん」)、余弦(「よげん」)正接(「せいせつ」)の基本的な3種類があり、記号ではそれぞれ sin(サイン), cos(コーサイン), tan(タンジェント)で表します。また、その逆数として「余割」「正割」「余接」をもし必要があれば使う事もあります。三角比は図形問題を考える時にも使えますがベクトルを考えるうえでも重要で、ベクトルを力学等で活用する時にも使用されます。

三角形の角の角度は基本的には0度より大きく180度未満ですが、それを拡張して三角比に対して変数を任意の実数としたものは特に三角関数と呼ばれます。三角関数は周期関数として代表的なものであり、数学的にも物理的にも応用の範囲が広い初等関数の1つです。

角度を表す記号は何でも良いのですが
特に多く使われるのがθ(「シータ」あるいは「テータ」英語で言うthの音を表すとされるギリシャ文字)であり、ここでも一般的な角度を表す記号として多く使用します。
三角関数はxy平面の座標上で原点を中心とした単位円周上の座標としても考える事ができる事などから円関数と呼ばれる事もあります。ただしこのサイトでは三角関数の名称を使用します。

■サイト内関連記事:

三角比(正弦・余弦・正接)の図形的な定義

三角比は直角三角形の辺の比であり、角度を変数として表されます。

三角形の各辺の比は相似である別の三角形でも同じ値ですから、三角比は直角三角形の大きさにはよらず角度によってのみ確定する値になります。角度によって1つの値が決まる事を意味します。

斜辺と底辺と高さの部分(直角以外の2つの角度のどちらを考えるかで底辺と高さは入れ替わります)を使用し、「sin(サイン)」「cos(コーサイン、コサイン)」「tan(タンジェント)」の記号を使って角度の関数として表します。

直角三角形の斜辺以外の1つの辺を底辺とした時に、斜辺と底辺のなす角度をθとします。斜辺の長さをc斜辺と共に角をなす辺の長さをa(図では底辺)もう1つの辺の長さ(図では高さ)をbとする時、三角比の基本となる正弦余弦正接角度θの関数としてそれぞれ次のように表されます。

三角比表記辺の比で表した時具体例
正弦sinθb/csin60°=\(\frac{\Large \sqrt{3}}{\Large 2}\)
余弦cosθa/ccos60°=\(\frac{\Large1}{\Large 2}\)
余弦tanθb/atan45°=1
公式としてtanθ=(sinθ)/(cosθ)が成立しています。
正弦、余弦、正接の定義

考えているのが直角三角形なので三平方の定理によりa+b=cですが、これは必要がある場合には三角比を表すのにも使用します。例えば斜辺の長さcを使わずにaとbだけで正弦と余弦を表すなら次のように書けます。

$$\sin\theta=\frac{b}{\sqrt{a^2+b^2}}\hspace{15pt}\cos\theta=\frac{a}{\sqrt{a^2+b^2}}$$

30°、45°、60°の三角比の出し方
三平方の定理を使えば直角三角形の斜辺とその他の辺の長さの関係が分かるので、三角比の値を計算する事ができます。

30°、45°、60°の三角比の具体的な値は図形的な考察から導出する事ができて、整理すると次のようになります。

三角比の値30°45°60°
正弦 sinθ\(\frac{\Large1}{\Large 2}\)\(\frac{\Large 1}{\Large \sqrt{2}}\)\(\frac{\Large \sqrt{3}}{\Large 2}\)
余弦 cosθ\(\frac{\Large \sqrt{3}}{\Large 2}\)\(\frac{\Large 1}{\Large \sqrt{2}}\)\(\frac{\Large1}{\Large 2}\)
正接 tanθ\(\frac{\Large 1}{\Large \sqrt{3}}\)\(\sqrt{3}\)
sin30°=cos60°となっている事や
sin45°=cos45°となっている事などは偶然の一致ではなく図形的な関係から成立します。

図形的にこれらの値を導出するには次のようにします。

60°の場合は1辺の長さが「2」の正三角形を考えると分かりやすく、
真っ二つにすると斜辺が2、底辺が1、高さが\(\sqrt{3}\)の直角三角形ができます。
するとまず、余弦についてcos60°=1/2が分かります。
次に高さ部分については三平方の定理を使って \(\sqrt{2^2-1^2}=\sqrt{4-1}=\sqrt{3}\) と計算します。
それによってsin60°=\(\sqrt{3}\)/2およびtan60°=\(\sqrt{3}\)を導出できます。

30°の場合は、直角三角形の残りの角度が90°-60°=30°である事を使います。すると底辺と高さの関係が変わるので、正弦と余弦に関しては60°の時の値を入れ換えた形になり、正接に関しては60°の時とは逆数の関係になるわけです。三角形の向きを変えて考えてみても同じ事になります。

45°の場合には直角二等辺三角形を考えて、底辺と高さをそれぞれ1とすれば、まず正接について tan45°=1が分かります。次に斜辺の長さは\(\sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt{2}\) となるので正弦と余弦の値も導出できます。

角度を0°より大きく90°未満とした時の三角比の取り得る範囲は次のようになります。

  • 0<sinθ<1【θに対して単調増加】
  • 0<cosθ<1【θに対して単調減少】
  • 0<tanθ  【θに対して単調増加で、90°に近付くにつれて無限に増加】

その他の角度についての三角比の値を知るには加法定理によって一部の値を計算できるほか、正弦についての無限級数展開(マクローリン展開)を使います。$$\sin \theta=\theta – \frac{\theta^3}{3!}+\frac{\theta^5}{5!}-\frac{\theta^7}{7!}+\cdots$$ただし、この式を使う時には角度は弧度法で表したものでなければなりません。
例として、10° は弧度法で\(\pi\)/18【rad】なので、式に代入して四捨五入で小数点第3位まで計算すると sin10° ≒ 0.1735 です。
角度が弧度法で0に近い値の時はsinθ≒tanθ≒θの近似式を使えます。(上記の展開式で第2項以降をほぼ0と考える事により得られます。)
10°に相当する弧度法の角度を小数で表すと\(\pi\)/18≒0.1744なので、10°の場合は概算的にはその近似式を使ってもよいと言えます。

三角関数の定義と考え方

三角比に対して適用する角度の範囲を0°以下や90°以上の値を考えた関数を三角関数と呼びます。三角関数の角度は基本的に弧度法を使って表記しますが、ここでは分かりやすさのために変数を度数法で記しておきます。また、三角関数を使う時には変数をxとする事も多いですが、ここでは変数をθで表すとします。

任意の実数値を取り得る角度(「一般角」)は図形的には直角三角形を反転させた時に意味を持ち得ると同時に、向きも含めた回転の意味も持ちます。直交座標上で原点を中心にして見た時に反時計回りの回転がプラスの方向への角度の増加、時計回りの回転がマイナス方向への角度の減少としての意味を持ちます。

360°に達した時は「1周」とみなします。三角関数は360°を経過するごとに0°の時と同じ値になると定義します。つまり周期的に同じ値を繰り返す周期関数となるわけです。

三角関数の値は、xy直交座標上の原点を中心とした半径1の円(単位円)の円周上の点の座標として表されます。より具体的にはx軸のプラスの部分を0°として、角度θになる直線を円に向かって引いた時の円との交点のx座標を余弦関数 cosθの値として、y座標を正弦関数 sinθの値とします。この時に、角度の範囲が0°より大きくて90°未満の時には三角比と全く同じ値をとるわけです。

sin0°=0,cos0°=1,sin90°=1,cos90°=1のように定義します。このような定義をするのは数学的な拡張として自然であるからというのもありますが、物理的に単位円周上の等速運動に対応する単振動などを考えてみるとそれを表現する関数として適切であるといった見方もできます。

正接関数はtanθ=(sinθ)/(cosθ)として定義します。ただし、正接関数においては cosθ=0となるθの値においては無限大になってしまい「定義できない」とします。より具体的にはθ=±90°,±270°等は正接関数の定義域から除外する事になります。

三角関数の具体的な値を、三角比の範囲も含めて挙げてみると次のようになります。

一般角(度数表記)正弦関数 sinθ余弦関数 cosθ正接関数 tanθ
0°
30°\(\frac{\Large 1}{\Large 2}\)\(\frac{\Large \sqrt{3}}{\Large 2}\)\(\frac{\Large 1}{\Large \sqrt{3}}\)
45°\(\frac{\Large 1}{\Large \sqrt{2}}\)\(\frac{\Large 1}{\Large \sqrt{2}}\)
60°\(\frac{\Large \sqrt{3}}{\Large 2}\)\(\frac{\Large 1}{\Large 2}\)\(\sqrt{3}\)
90°定義しない
120°\(\frac{\Large \sqrt{3}}{\Large 2}\)\(-\frac{\Large 1}{\Large 2}\)\(-\sqrt{3}\)
135°\(\frac{\Large 1}{\Large \sqrt{2}}\)\(-\frac{\Large 1}{\Large \sqrt{2}}\)-1
150°\(\frac{\Large 1}{\Large 2}\)\(-\frac{\Large \sqrt{3}}{\Large 2}\)\(-\frac{\Large 1}{\Large \sqrt{3}}\)
180°-1
210°【-150°と同じ】\(-\frac{\Large 1}{\Large 2}\)\(-\frac{\Large \sqrt{3}}{\Large 2}\)\(\frac{\Large 1}{\Large \sqrt{3}}\)
225°【-135°と同じ】\(-\frac{\Large 1}{\Large \sqrt{2}}\)\(-\frac{\Large 1}{\Large \sqrt{2}}\)
240°【-120°と同じ】\(-\frac{\Large \sqrt{3}}{\Large 2}\)\(-\frac{\Large 1}{\Large 2}\)\(-\sqrt{3}\)
270°【-90°と同じ】-1定義しない
300°【-60°と同じ】\(-\frac{\Large \sqrt{3}}{\Large 2}\)\(\frac{\Large 1}{\Large 2}\)\(-\sqrt{3}\)
315°【-45°と同じ】\(-\frac{\Large 1}{\Large \sqrt{2}}\)\(\frac{\Large 1}{\Large \sqrt{2}}\)-1
330°【-30°と同じ】\(-\frac{\Large 1}{\Large 2}\)\(\frac{\Large \sqrt{3}}{\Large 2}\)\(-\frac{\Large 1}{\Large \sqrt{3}}\)
360°【0°と同じ】
もちろんこれらの値は暗記するものではなく、
座標上の単位円から判断するか三角比の値をもとに公式から計算するものになります。

基本的には三角比の値を使う事ができて、それがx軸対称やy軸対称の形で符号が入れ替わったり角度を180°から引いた形で扱うといった計算をしている事になります。

三角比と三角関数の公式

基本公式としては次のようなものがあります。三角比と三角関数とで同じ公式を適用する事ができて、違いは定義域(角度の範囲)だけになります。三角関数で統一的に考えて、三角比は範囲を限定した特別な場合と考えても同じです。

三角比の公式

正弦、余弦、正接について次式が成立します: $$\tan\theta=\frac{\sin\theta}{\cos\theta}$$ $$(\cos\theta)^2+(\sin\theta)^2=1$$ $$【\cos^2\theta+\sin^2\theta=1と一般的に書きます。】$$ $$\cos (90°-\theta)=\sin \theta$$ $$\sin (90°-\theta)=\cos \theta$$ $$\tan (90°-\theta)=\frac{1}{\tan\theta}$$

三角比のベキ乗の表記

三角比の2乗については、次のように書く習慣があります。 $$\sin^2\theta\hspace{15pt}\cos^2\theta\hspace{15pt}\tan^2\theta$$ また2乗だけでなく、3乗、4乗等でも同じようにします。
これは一応「ある角度の2乗」θの三角比 sin(θ)と区別するためです。

公式

上記の公式の第1式である正接を正弦と余弦で表す関係は、単純に正弦を余弦で割ると出ます。斜辺の部分は消えてしまうわけです。

$$\frac{\sin\theta}{\cos\theta}=\frac{b}{c}\cdot\frac{c}{a}=\frac{b}{a}=\tan\theta$$

2番目の、正弦と余弦のそれぞれの2乗の和が1になるという式は、三平方の定理により分かります。

$$(\cos\theta)^2+(\sin\theta)^2=\frac{a^2+b^2}{c^2}=\frac{c^2}{c^2}=1$$

90°-θ の角度を考えている関係式は、図を見ると分かりやすいかと思います。直角三角形の θ とは別の角度の三角比は、正弦と余弦の関係をちょうどひっくり返して表せるという事を意味します。

正接の公式tan(90°-θ)については最初の関係式 tanθ=(sinθ)/(cosθ) も使って
{sin(90°-θ)} / {cos(90°-θ)} によって出しています。
正接の公式についてはいずれも同じように導出する事ができます。

特に三角関数に対しては次の式が成立する、あるいは定義が行われます。

特に三角関数に対する定義と公式
定義・公式正弦関数 sinθ余弦関数 cosθ正接関数 tanθ
0°
90°定義せず
マイナス
の角度
sin(-θ)
=-sinθ
cos(-θ)
=-cosθ
tan(-θ)
=-tanθ
180°-θsin(180°-θ)
=sinθ
cos(180°-θ)
=-cosθ
tan(180°-θ)
=-tanθ
180°+θsin(180°+θ)
=-sinθ
cos(180°+θ)
=-cosθ
tan(180°+θ)
=tanθ
360°+θsin(360°+θ)
=-sinθ
cos(360°+θ)
=-cosθ
tan(360°+θ)
=tanθ
90°+θsin(90°+θ)
=cosθ
cos(90°+θ)
=-sinθ
tan(90°+θ)
=-(1/tanθ)

その他、重要となる(他の色々な場面で使う)主な公式や定理には次のようなものがあります。

定理・公式等主な内容備考
余弦定理=a+b-2abcosθθはaとbの長さの辺のなす角
θ=90°の時は三平方の定理
加法定理sin(θ+θ)=sinθcosθ+sinθcosθ2
cos(θ+θ)=sinθsinθ-cosθcosθ2
正接の加法定理も存在
倍角の公式sin(2θ)=2sinθcosθ
cos(2θ)=sinθ-cosθ
加法定理から導出
和積の公式sinθ+sinθ=\(2\sin\frac{\Large \theta_1+\theta_2}{\Large 2}\cos\frac{\Large \theta_1-\theta_2}{\Large 2}\)
cosθ+cosθ=\(2\cos\frac{\Large \theta_1+\theta_2}{\Large 2}\cos\frac{\Large \theta_1-\theta_2}{\Large 2}\)
加法定理から導出
積和の公式もあり
三角間数の
微分公式
(d/dθ)sinθ=cosθ
(d/dθ)cosθ=-sinθ
微分の定義式より
積分にも使用可
極座標変換x=rcosθ
y=rsinθ
図から導出
複素数の
指数関数表示
eiθ=cosθ+isinθi は虚数単位
オイラーの式とも
マクローリン
展開
sinθ=θ-θ/(3!)+θ/(5!)-・・・
cosθ=1-θ/(2!)+θ/(4!)-・・・
正接に関しては
逆正接関数のほうが簡単
内積の定義\(\overrightarrow{a}\cdot\overrightarrow{b}=|\overrightarrow{a}|\hspace{2pt}|\overrightarrow{b}|\cos\theta\)θは2つのベクトルのなす角

三角形の合同

2つの三角形が合同であるとは、形も大きさも全く同じである事を言います。
形も大きさも同じという事は、面積も等しくなります。

合同な三角形であっても、向きなどが別々の方向を向いていて「見た目」が異なってる場合もあります。2つの三角形が合同であるかを調べるには次の3つの条件を満たしているかを調べます:

三角形の合同条件

次のいずれか1つを満たせば2つの三角形は合同です。

  1. 3辺の長さがそれぞれ等しい
  2. 2辺の長さとそのはさむ角の大きさが等しい
  3. 1辺の長さと両端の角の大きさがそれぞれ等しい

2つの三角形が合同である事は「3本線」の記号を使って△ABC≡△DEFのように書きます。この時、角度が等しい頂点が対応するようにします。例えば△ABC≡△DEFと書いている場合には∠BCA=∠EFDである事も表しています。

合同である三角形は、この3つの条件全てを満たします。つまり、1つの条件を満たせば他の2つの条件も同時に満たされるという事です。合同である事を証明するには1つの条件が満たされている事を示せば十分という事になります。

三角形の合同条件
2つの三角形が合同である事の証明においては例えば「2辺とそのはさむ角」の条件を使う場合には、①AC=A’C’ ②BC=B’C’ ③∠ACB=∠A’C’B’ の3つを明らかにする事で△ABCと△A’B’C’ は合同である事を証明できます。

図を見ると分かりやすいと思うのですが、ある三角形に対して合同な別の三角形とは、1つの三角形を回転や反転させたものであると言う事もできます。イメージとしてそのように捉えるとよいでしょう。
回転や反転は角度や辺の長さを「不変」に保つ操作であるとも言えます。

合同の関係と似ているものとして、相似の関係があります。相似とは「形だけが同じで大きさは違う」というものです。

形も大きさも同じである場合が合同の関係であり、2つの三角形が合同である場合は相似である条件も満たしています。つまり、合同と相似は無関係なものではなくて、形も大きさも等しくなるためのやや厳しい条件が課されるのが合同で、形だけが等しい緩い条件だけが課されているのが相似というわけです。

一見すると合同にはみえないけれどよく見ると合同であるという例は、例えば三平方の定理の証明の1つで見られます。この例では形も大きさも全く同じ三角形が存在するのですが、向いている方向が全く異なるうえに他の様々な線が入り乱れているので気付きにくいのです。

合同な三角形の例
右側の図には互いに合同な三角形が2つあります。

しかし、丁寧に辺の長さや角度を調べると確かに合同である事を示せます。この場合では「2辺とその挟む角が等しい」という条件を使っています。

図の3つの四角形は「正方形」であるという条件があるので、
AC=AC’ AB=AB’ という長さの関係がまずあります。
次に、∠BAC=∠CAB+∠CAC’=∠CAB+90°ですが、
他方で∠B’AC’=∠CAB+∠B’AB=∠CAB+90°なので
∠BAC=∠B’AC’になります。
ゆえに、△ABC≡△AB’C’ である、と証明されます。

こういう具合に、合同である事を示すわけです。
尚、この例の場合では、「合同ゆえに面積も等しい」と話が続いていきます。

このように「見ただけでは分かりにくい」場合であっても、辺の長さや角度を調べて合同である事を確かに示せる場合があるわけです。数学的に論証するという事を学ぶ1つの意味がここにあります。単に論理的な思考をするというだけでなくて、事実関係の検証をする1つのツールとしての意味があるという事です。

3辺が全て等しいという条件を使う場合も、たまにあります。例えば、円に外接する三角形の頂点と円の中心で構成される2つの三角形です。

合同な三角形の例②
右側の図の小さな三角形2つは互いに合同です。

上図において、△AOCと△BOCに注目します。
まず、同じ円の半径なのでOA=OBです。
また、辺OCは共有されているのでもちろん長さは2つの三角形で等しいのです。
さらにここで、∠OAC=∠OBC=90°なので、三平方の定理によりAC=BCになります。
よって2つの三角形の3つの辺の長さはそれぞれ等しく、確かに△AOC≡△BOCというわけです。

☆この場合について細かい事を言うと、∠OAC=∠OBCであっても、90°でなければ、この部分の角の大きさが等しいというだけで合同とは言えないのです。
これは、式で示すのであれば余弦定理を使います。すると、90°以外でこの部分の角の大きさが等しい場合には、ACの長さとして「2つ」の解が得られる事があります。つまり、合同である場合とそうでない場合が生じ得るのです。
そのため、2辺の長さと「どれでもいいから1つの角」が等しいというだけでは、それだけで必ず合同であるとは断定できないのです。他方、その角度が90°であれば余弦定理において解は1つだけなので合同であると言えます。もちろん、直角三角形において余弦定理は三平方の定理そのものです。
詳しく言うと、「2つの三角形が合同である」⇒『2辺の長さとどれか1つの角が互いに等しい』
という関係式は正しいのですが、その逆は言えないという事です。『2辺の長さとどれか1つの角が互いに等しい』という事は、2つの三角形が合同である事の必要条件ではあるけれども十分条件ではない、という事です。(この考え方は中学校では必要ありません。)

合同条件に関する注意点
2辺とその「はさむ角」がそれぞれ等しい場合に2つの三角形は合同になりますが、2辺が「はさんでいるわけではない」角度が等しい場合はどうなるのかを図で説明しています。

逆に、見た感じ同じ形・大きさに見えるけれどもきちんと調べるとじつは合同ではないというパターンもあり得ます。描かれた図ではいかにもそれらしく見えるけれども、条件を整理すると合同の3条件のいずれにも当てはまらず「じつは形も大きさも違う」という事が判明する場合もあります。

ここでは、あくまで図形問題に限定してという話ではありますが、「見た目」で判断するのではなく論拠を備えて検証するという事が三角形の合同条件や相似条件の学習において重要なポイントの1つです。これは試験問題を解くという話の中でも重要なので、おさえておきたいところです。

行列式の定義

行列式(英:determinant)の定義を述べます。これは、正方行列に対して定まる実数(複素行列であれば複素数)を指します。

行列自体の定義や計算については別途に詳しくまとめています。

定義の式

行列がAだとすると、行列式は |A| あるいは det Aなどと記します。

式で書いた場合の行列式の定義

n次の正方行列A=(\(a_{ij}\))に対して行列式 det Aは次のように定義されます。 $$\mathrm{det}A = \sum_{\sigma}\mathrm{sgn(\sigma)}\left(\prod_{i=1}^na_{\sigma(i)i}\right) $$ ここで \(\sigma\) は1~nの番号の並びに対する「置換」の1つで、
和は置換全体【n!個ある】に対してとるとする。
\(\sigma\)(\(i\)) は番号\(i\) が置換 \(\sigma\) によって変わった後の番号。
【例えば番号1が3に変わるなら sgn(1)=3】
\(a_{\sigma(i)i}\) は具体的には \(a_{11}\) や \(a_{23}\) などを指す。
【「行」の番号のところに置換された数字を入れる。】
sgn(\(\sigma\)) は置換の「符号」と言い、+1か-1の値だけをとり、次式で定義される: $$\mathrm{sgn}(\sigma)=\prod_{i<j}\frac{\sigma (j)-\sigma (i)}{j-i}$$

これが一般の行列式の定義ですが、文章で書いても数式で書いても複雑に見えるかもしれません。

そこでこの行列式の定義は一体何を言ってるのかという事を、1つ1つの特徴や具体例を見ながら確認していきましょう。

定義の説明図
行列の要素を選び出して積の形にして、プラスかマイナスの符号を定めて、n!個加え上げる(マイナス符号の部分は引き算)というのが「行列式」の定義の内容です。置換は順列とも言います。

特徴と具体例

行列式の定義式について、どのような特徴があるのかを見てみましょう。
まず、①正方行列について定義され、②実数や複素数などの「値」であり、③何次の行列式かによって構成の仕方が異なる という特徴があるのです。

行列式の特徴①
  • 正方行列にのみ定義される
  • 0、-1、1+i といった実数や複素数などの「値」である
    (適用する理論によっては関数を考えますが、とにかく「行列」ではないという事です。)
  • 正方行列によって2次、3次、4次・・の行列式の構成は異なる
    (統一的な規則は一応あり)
3次の行列式
3次の行列式には6つの項があり、それぞれの項は行列の3つの要素の積です。

行列式は、行列の要素を組み合わせて掛け算を作り、それを1つの項として複数足したり引いたりする事で定義します。この時、対象の行列が何次であるかによって項の数が変わります。

結論を言うとn次の行列式は「n!(nの階乗)個」の数の項の足し算・引き算で構成されます。
これは、n個の数の並び替え方(順列・置換)の総数という事です。
そして行列式の中のそれぞれの項は、行列の中のn個の要素の掛け算で構成されます。

行列式の特徴②
  • n次の正方行列の行列式の項数はn!個である。
    【n個の数の並べ方の総数】
  • 行列式の各項は、行列の要素によるn個の数の掛け算で構成されている。
    例えばa211233
  • 基本的にはa211233のように「列」の番号は(1,2,3)の順番で並べて、
    「行」の部分に置換によって入れ替えた番号を入れる。
    【この場合は(2,1,3)】

項数がn!個という事は5次の正方行列の場合には5!=120個の項があるという事で、
もちろんこれは一般的には手計算で扱うものではありません。

とりあえず、まずここまで性質を見たところで、具体的な行列式を見てみましょう。ただし、行列の要素はa12のように、まだ具体的な値ではなく一般的な表記としておきます。

$$A_2=\left(\begin{array}{ccc} a_{11} & a_{12} \\ a _{21} & a_{22}\end{array}\right) \hspace{10pt}A_3=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13}\\ a _{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right) \hspace{10pt}A_4=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13}& a_{14}\\ a _{21} & a_{22} & a_{23}& a_{24} \\ a_{31} & a_{32} & a_{33}& a_{34}\\a _{41} & a_{42} & a_{43}& a_{44} \end{array}\right)$$

の時、行列式は次のようになります。

2次の行列式

$$\mathrm{det}A_2=a_{11}a_{22}-a_{21}a_{12}$$

3次の行列式

$$\mathrm{det}A_3=a_{11}a_{22}a_{33}-a_{11}a_{32}a_{23}+a_{21}a_{32}a_{13}-a_{21}a_{12}a_{33}+a_{31}a_{12}a_{23}-a_{31}a_{22}a_{13}$$

4次の行列式

$$\mathrm{det}A_4$$ $$=a_{11}a_{22}a_{33}a_{44}-a_{11}a_{22}a_{43}a_{34}+a_{11}a_{32}a_{43}a_{24}-a_{11}a_{42}a_{33}a_{24}+a_{11}a_{42}a_{23}a_{34}-a_{11}a_{32}a_{23}a_{44}$$ $$+a_{21}a_{32}a_{13}a_{44}-a_{21}a_{12}a_{33}a_{44}+a_{21}a_{12}a_{43}a_{34}-a_{21}a_{32}a_{43}a_{14}+a_{21}a_{42}a_{33}a_{14}-a_{21}a_{42}a_{13}a_{34}$$ $$+a_{31}a_{42}a_{13}a_{24}-a_{31}a_{42}a_{23}a_{14}+a_{31}a_{22}a_{43}a_{14}-a_{31}a_{22}a_{13}a_{44}+a_{31}a_{12}a_{23}a_{44}-a_{31}a_{12}a_{43}a_{24}$$ $$+a_{41}a_{12}a_{33}a_{24}-a_{41}a_{12}a_{33}a_{24}+a_{41}a_{32}a_{13}a_{24}-a_{41}a_{32}a_{23}a_{14}+a_{41}a_{22}a_{33}a_{44}-a_{41}a_{22}a_{43}a_{34}$$

これを見ると、手計算で具体的に式を書いて扱ってもよいのはせいぜい3次までという事はおおよそ分かるかと思います。4次の行列式の項数は4!=24個で、見ての通り書き下すと結構長い式になってしまいます。

5次の場合は120項あるので、ここに書くのはやめます。

いずれにしても、行列式とはどういうものなのかは、これで大体の雰囲気はつかめるかと思います。このように、一定の規則に基づいて行列の要素の積を足し算引き算で連結したものなのです。

置換の符号に対するプラスマイナスの決め方

具体的な書き下された行列式を見ると、各項のプラスマイナスの符号が入れ替わっている事が目につくと思います。これはどういう基準で決めているのでしょうか?

その決め方は、次のようになります。

行列式を構成する項のプライスマイナスの符号の決定
  • 112233のように行列の要素を掛け算の形で並べておく。
  • 行列の要素の「列」の番号は固定して
    「行」の番号(つまり添え字の1番目)だけの並び替えを考える
  • 順番通りに並んだ(1,2,3,・・・,n)の並びの場合、符号はプラス(+)とする。
    112233 の符号はプラスになる。
  • (1,2,3,・・・,n)の2つの数を入れ替える【「互換」を行う】と
    符号が反転し、マイナス(-)になるとする。
    例えばa112233の符号はプラスなので、
    行部分の添え字の2と3を入れ替えた a113223 の符号はマイナスです。
    行列式の中ではa112233-a113223+・・・のように続ける事になります。
  • 以降、「行」の数の入れ替えを行う(互換を行う)ごとに符号は反転する。

この規則を、より一般的に書くと次のようになります。
冒頭の「定義」に段々と近づく表記になります。

行列式の各項の符号の決め方(置換による表現)

一般に、(1,2,3,・・・,n)の配列に対して、
奇数回の互換を行った並び替えの配列(「奇置換」)の符号はマイナスであり、
偶数回の互換を行った並び替えの配列(「偶置換」)の符号はプラスになる。
(恒等置換は0回の互換であるとして偶置換であると考えます。)

冒頭の定義では「置換の『符号』」sgn(σ) というものが書かれ計算式が定義されていましたが、これは上記のプラスマイナスの符号の決め方を式だけで書くとあのようになるという事です。いまいちど sgn(σ) の定義式を見てみましょうか。

置換の「符号」の定義式の意味

ある置換σに対する「符号」sgn(σ) の定義式を改めて記すと次のようになります: $$\mathrm{sgn}(\sigma)=\prod_{i<j}\frac{\sigma (j)-\sigma (i)}{j-i}$$ n=3の場合に(1,2,3)→(2,3,1)なるσについて具体的に計算してみると、 $$\prod_{i<j}\frac{\sigma (j)-\sigma (i)}{j-i}=\frac{1-2}{3-1}\cdot \frac{1-3}{3-2}\cdot\frac{3-2}{2-1}=+1$$

sgn(σ) の定義式において分母の値には次の特徴があります。

  • i<j という条件があるのでj-i>0 ・・分母は必ずプラスの値になる。
    つまり全体の積の符号に対して分母は影響を与えない。
  • 絶対値としては分子に必ず同じ大きさのものが積の中に1つ含まれており、
    分母分子で打ち消し合って積全体の絶対値は必ず1にする。

置換の符号に対しては、さらに次の2つの公式が成立します。

置換の符号 sgn(σ) に対して成立する公式
  1. 任意の互換τに対して sgn(τ)=-1
  2. 任意の2つの置換 σ と σ に対して、sgn(σσ)=sgn(σ)sgn(σ)

σσ は、σを行った後にσを行う置換です。
sgn(σ)sgn(σ)は、2つの符号の積です。

恒等置換に対する符号は+になるので、1回互換をすると-になり、上記の2つ目の公式によりもう1度別の互換をすると+に転じます。

要するに結果は「偶置換の時プラス符号、奇置換の時マイナス符号」という事で、その事を式で表現したいがために上記 sgn(σ) の定義式を考えていたというわけです。

偶置換と奇置換の符号

置換の符号 sgn(σ) について、次の事が成立します。

  1. σ が偶置換の時、sgn(σ)=+1 【恒等置換も含める】
  2. σ が奇置換の時、sgn(σ)=-1

行列式は、一般の連立一次方程式や、抽象化された一般の体積を考える時など、線形結合で表される式を複雑に組み合わせる時に式を整理するのに役立ちます。ただし2次や3次の行列に関しては普通に行列内の要素ごとの計算を考えたほうが速い場合もあり、行列式を使える場面であっても使ったほうが良いかどうかは考察の対象によって異なってきます。

初等関数の仲間達【高校数学の関数】

初等関数(英:elementary function)とは、大雑把に言うと「高校までに教わる関数」の事です。要するに、具体的には高校数学で扱っている関数が該当するのです。

例えば2次関数や、三角関数、それと指数関数と対数関数などが該当します。

★もう少し詳しく言うと「初等関数」とは、いわゆる高校で教わる関数の「加減乗除の組み合わせ」およびそれらの「合成関数」「逆関数」を指すとされますが、これはあまり気にしなくてよいでしょう。(ただし高校数学でも微積分までやる時は気にしてください。合成関数の微分や、逆関数の微分に対して特定の公式が成立するからです。)

初等関数は「特殊関数」に対する語でもあります。特殊関数とは具体的にはガンマ関数、ベータ関数、ゼータ関数のように積分や極限によって定義される関数が該当し、初等関数では表せない事を1つの特徴とします。

高校で教わる関数まとめ

さて、初等関数とは高校数学での関数と言い換えてもそんなに間違いはないので、初等関数とはどういうものかを見ると高校で教わる関数というものが見えてきます。

高校で教わる初等関数
  1. 単項式と多項式:xで表される関数。1次関数、2次関数、3次関数など。
    反比例関数1/xや変数の平方根を考えた \(\sqrt{x}\) も含みます。
  2. 指数関数 実数等の「x乗」の形の関数。特に自然対数の底を使ったeが重要。
  3. 対数関数 ある数を何乗するとxになるかを表したもの。指数関数の逆関数でもある。
  4. 三角関数 直角三角形の辺の比をもとにした関数。代表的な周期関数としても使用。
  5. 逆三角関数 その名の通り三角関数の逆関数で、最近の高校ではあまり扱わない。微積分の理論においてむしろ使う事がある。

※他に例えば「双曲線関数」というものもありますが、これは指数関数の組み合わせで作る関数です。その他にも、初等関数を組み合わせて便宜上特別な名称をつける場合があります。ただし、高校数学ではそれらはさほど重要でない場合が多いです。

初等関数というものは、じつはまとめるとこれだけしかないのです。
もちろん、これらの組み合わせも初等関数であり、例えば1次関数と三角関数の組み合わせの xsin x なども該当します。また、高校ではこれらの関数の他に数列やベクトルや微積分や順列・確率等も教えますので、これら初等関数の一覧が高校数学の内容全てを網羅しているという意味ではありません。

しかしそれでも、高校で教わる具体的な関数というのは大別すると「じつはこれだけ」であるというのは少し意外であるという人もいるのではないでしょうか。高校数学でも、大学入試などでは確かに初見で時間内に正確に解くのはなかなか難しい「難問」や複雑な計算は存在しますが、それらも原則としてはじつは「基礎事項」の組み合わせなのです。

つまり学ぶべき基礎事項をしっかり整理して把握したうえで、それらを組み合わせて問題を解く練習をしてみる事が高校数学を得意にする鍵になります。

単項式と多項式

単項式とはxのa乗の形、つまりxの単独の形です。
これらが和や差で組み合わさったx+x+1などが多項式です。
のaを「指数」とも言います。単項式や多項式での指数の値は、高校数学では実数全体を取り得ます。

★高校数学および大学入試では、1次関数および2次関数について、図形上の性質と式による表現を組み合わせた出題がなされます。3次関数については微分によりグラフの形を考察するので、基本的には微積分での出題になります。
他方これらに対して、多項方程式を解くという作業は(中学校での)2次方程式の解法まででじゅうぶんです。3次方程式の解法や、4次方程式の解法は高校数学では原則として問われません。(ただしそれらを高校数学の範囲の知識で解く事は可能です。)

=1で、つまり定数関数は単項式に含めている形になります。

のaが負の値の時は分母に関数を持っていき反比例の形にしたものです。この時、x=0を定義域(変数xの値の範囲の事)から必ず除外して考えます。

$$x^{-1}=\frac{1}{x},\hspace{5pt}x^{-2}=\frac{1}{x^2}$$

のaが分数になる時は、自然数nを使って1/nの形になる時は「n乗根」(の正の値)を表します。この場合には、aがm/nのような形の時は、「xのm乗とxのn乗根の掛け算」であると考えます。

$$x^{\frac{1}{2}}=\sqrt{x},\hspace{10pt}x^{\frac{1}{3}}=^3\sqrt{x}$$

また、高校数学ではあまり気にする必要はないですがxのaは無理数でもよくて、じつはさらに別途にaが複素数の場合も定義可能です。

こうしてみるとxの「何乗」の部分が自然数、負の数、有理数・・の場合があって複雑に見えるかもしれませんが、重要なのはそれらをxという形で統一的な演算が可能であるという事です。

指数関数

指数関数とは、2次関数や3次関数などとは異なり、「2のx乗」2などの関数です。基本的な考え方はxの場合と同じで、指数関数2などの変数xの定義域は実数全体とする事ができます。

指数関数のグラフの形は、関数自体にマイナス符号がついていなければ正の値を常にとるという特徴があります。これは単項式や多項式で表される関数との大きな違いです。具体的な値を代入してみたりグラフに描いてみたりすると分かりやすいでしょう。

指数関数と対数関数
指数関数のy軸との交点は(0,1)であり、対数関数はx軸と(1,0)で交わります。

指数関数で重要なのは、e=2.718・・という無理数のx乗、eです。ただし、これが重要なのは微積分においてなので、もしも高校数学の範囲で微積分を除いて考えるのであればあまり気にしなくてよい事です。

対数関数

対数関数とは、指数関数の逆関数であり、logxという記号で(正の数)aを「何乗するとxになるか」という値を関数とするものです。ここでのaの事を対数の「底」と言います。この時、x=aであれば logx=1, x=aであればlogx=2です。

logxにおいて、a=10の時を特に常用対数と言い、a=e=2.718・・の時を特に自然対数と言います。高校数学ではあまり気にしなくてよいのですが、常用対数を log x、自然対数を ln x(こちらをlog xとする人も)で記す場合があります。対数関数の場合、関数の値自体は負の数でもあり得ますが、変数の範囲は「正の数」という点がひとつ注意点です。

対数関数も指数関数と同じく、高校数学ではどちらかというと微積分との関連のほうが重要になってきます。

三角関数

三角関数は、弧度法で表した三角形の角度を変数とした辺の比(三角比)を基本とする関数で、正弦関数(sin x)、余弦関数(cos x)、正接関数(tan x)の3つが基本です。角度を0から直角までに限定した場合して平面図形に使うなどには特に三角比と呼ぶ場合もあります。

必要に応じてこれらの逆数(例えば余接関数 cot x=1/(tanx))を考える事もありますが、高校数学では重要ではないでしょう。まず初めに学習すべき事を絞る事も大事である場合もあります。高校数学での基本は sin, cos, tan の3つだと思ってよいです。

三角関数は基本的には「角度」を変数とするのですが、プラスマイナスの値と対称性を考えて三角関数の変数の範囲は実数全体とします。(tan xだけは\(\pi\)/2 の奇数倍を定義域から除きます。)

三角関数
三角関数は三角比を基本としながら、定義域を実数全体に拡張した周期関数です。ただし正接関数については、値が無限大になってしまう「90°」の部分を定義域から除きます。

前述の通り、逆三角関数については最近の高校ではほとんど問われないので、原則として気にする必要はありません。大学数学で扱う微積分の特定の計算で、逆三角関数を使う事が有用である場合があります。

以上、初等関数の一覧と重要な点を列挙しましたが、①:まずは学習すべき内容を整理し全体像をつかむ → ②:各関数についての細かい規定や計算方法を知る → ③:それらを組み合わせた問題(主に大学入試問題)を解く練習を積んでみる という手順が高校数学を得意にする勉強のやり方の1つです。