電磁場の波動方程式と真空中の電磁波の式

4つのマクスウェル方程式からは電磁波の式を得るための波動方程式およびそのもとになっている一般形の方程式の導出されます。

■関連サイト内記事

個々のマクスウェル方程式の性質や数式的な解析は他記事で詳しく説明しています。

電場と磁場の波動方程式

結論を先に述べると、マクスウェル方程式からは
次のような電場と磁場のそれぞれについての波動方程式を導出できます。

真空中での電場と磁場の波動方程式

真空中でρ=0および\(\overrightarrow{j}\)=0である条件では
電場と磁場のそれぞれについて成立する式は、
微分方程式としては次のように3次元の場合の波動方程式になります。

真空中における
電場の波動方程式
\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\overrightarrow{E}=0\hspace{5pt}\)
真空中における
磁場の波動方程式
\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\overrightarrow{B}=0\hspace{5pt}\)

εは真空の誘電率、μは真空の透磁率です。
係数については光の速さc=1/\(\sqrt{\epsilon_0\mu_0}\)を使って書いても同じです。
また、方程式を左辺と右辺に分けて書いても同じ微分方程式を表します。

別の書き方左辺と右辺を分けた式光の速さを使った時
電場\(\nabla^2\overrightarrow{E} =\epsilon_0\mu_0\frac{\Large\partial^2} {\Large\partial t^2}\overrightarrow{E}\) \(\left(\nabla^2-\frac{\Large 1}{\Large c^2} \frac{\Large\partial^2}{\Large\partial t^2}\right)\overrightarrow{E}=0\)
磁場 \(\nabla^2\overrightarrow{B}=\epsilon_0\mu_0 \frac{\Large\partial^2}{\Large\partial t^2} \overrightarrow{B}\) \(\left(\nabla^2-\frac{\Large 1}{\Large c^2}\frac{\Large\partial^2}{\Large\partial t^2}\right)\overrightarrow{B}=0\hspace{5pt}\)

このように電場と磁場のそれぞれについて全く同じ形の式がマクスウェル方程式から導出されるわけですが、「真空中」という条件がついています。

これらの波動方程式には、もとになっている形があります。

マクスウェル方程式から法則と数学的な変形だけで直接的に導出される式は、
真空中に限らず一般の場合に成立する式です。

もとの形の式(真空中とは限らず一般の場合)

マクスウェル方程式から導出されるもとの形の式は次の通りです。 $$\left(\nabla^2-\epsilon_0\mu_0\frac{\partial^2}{\partial t^2}\right)\overrightarrow{E}=\frac{1}{\epsilon_0}\mathrm{grad}\rho+\mu_0\frac{\partial\overrightarrow{j}}{\partial t}$$ $$\left(\nabla^2-\epsilon_0\mu_0\frac{\partial^2}{\partial t^2}\right)\overrightarrow{B}=-\mu_0\mathrm{rot}\overrightarrow{j}$$ 一般の場合では電場と磁場の両方の式に電流密度が関係してくる事になります。

また、電場に対するスカラーポテンシャル(時間変動も含めた一般的な形)と磁場に対するベクトルポテンシャルを使った形の波動方程式と、そのもとになっている関係式もあります。

ポテンシャルを使った場合の波動方程式(一般形)
一般形εμを使って書いた時光の速さを使った時
電場の式\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\phi=-\frac{\Large\rho}{\Large\epsilon_0}\)\(\left(\nabla^2-\frac{\Large 1}{\Large c^2}\frac{\Large\partial^2}{\Large\partial t^2}\right)\phi=-\frac{\Large\rho}{\Large\epsilon_0}\)
磁場の式\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial}{\Large\partial t^2}\right)\overrightarrow{A}=-\mu_0\overrightarrow{j}\)\(\left(\nabla^2-\frac{\Large 1}{\Large c^2}\frac{\Large\partial}{\Large\partial t^2}\right)\overrightarrow{A}=-\mu_0\overrightarrow{j}\)

右辺を0とみなせる状況下では普通の波動方程式の形になります。
ただし、後述するこの式の解は右辺の電荷密度と電流密度が0でない場合も含んだ形の解です。

電磁波と光の関係

真空中の光の速さをcとすると実は数値的にεμ=1/(c2) が成立しています。

ε=8.8542×10-12
μ=1.2566×10-6
c=2.9979×10です。

1/(εμ)≒1/(11.126187×10-18)≒8.9878×1016で、この平方根を考えると確かに真空中の光の速さとほぼ同じになります。
(物質中では光の速さは変わります。また、同じく誘電率と透磁率の値も物質中では変わります。)

さらに、波動方程式の解から分かる波(電磁波)が進行する速さは1/\(\sqrt{\epsilon_0\mu_0}\) です。

これは電磁現象に限らず一般の波動について言える事で、
例えば速さvで「波形」が進行するsin(kx-ωt)のような形の関数はω/k=vのもとで
\(\left(\frac{\Large\partial^2}{\Large\partial x^2}-\frac{\Large k^2}{\Large \omega^2}\frac{\Large\partial^2}{\Large\partial t^2}\right)\sin(kx-\omega t)=0\) を満たします。
この時に時間で偏微分する項の係数の逆数の平方根(プラスの値)はω/kで、
ωは角速度または角周波数で周期Tとω=2π/Tの関係があります。
またkは波数で波長λとk=2π/λの関係があるのでω/k=(2π/T){λ/(2π)}=λ/Tです。
ここで波の進行の速さvはv=λ/Tで表されるので、ω/k=vとなっています。
正弦波に限らず波動に対しては速さを考える事ができ、また正弦波でない波動を正弦波の重ね合わせとして考える方法もあります。

εμ=1/(c2) からc=1/\(\sqrt{\epsilon_0\mu_0}\) なので、
電磁波が真空中を伝わる速さは光の速さに等しいという結果が得られます。

ところで光はマクロで見ると波なので、
物理学的には電磁波と光は波動として同じものであると捉えられています。
上記の関係式は、偶然にもほぼ一致するという事では無くて
「理論的にも実験的にも必ず成立する式である」
というのが物理学における解釈であるわけです。

いわゆる「目に見える光」は可視光とも呼ばれ、光の波長によって見える範囲が限定されている事が分かっています。(人と動物ではその範囲が違っていたりします。)

電磁波が光であるというのは基本的には「波動としては」という事であり、光は粒子(光子)でもあります。より詳しく言うと光は1つ1つは粒子として振る舞うけれども、それが多数集まると波として振る舞うようになります(干渉などの現象を起こすようになる)。ただし、電磁波と光を同一視できる関係は通常のマクロなスケールにおいてだけでなく、ミクロのスケールにおいても電場と磁場(のポテンシャル)から考えて光を量子力学的に考察する事がなされます。

導出に必要な式および法則・記号・公式等

まず、マクスウェル方程式のうち時間微分を含む2式であるアンペールの法則と電磁誘導の法則の式に着目します。それらは、発散と回転の分類から言うと膜ウェル方程式の中で電場と磁場の回転に関する2式でもあります。

マクスウェル方程式の微分形
マクスウェル方程式
(微分形)
時間微分を含まない式
(電磁場の発散)
時間微分を含む式
(電磁場の回転)
電場の式電場に関するガウスの法則
\(\mathrm{div}\overrightarrow{E}=\frac{\Large\rho}{\Large\epsilon_0}\)
アンペールの法則
\(\mathrm{rot}\overrightarrow{B}=\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\)
磁場の式磁場に関するガウスの法則
\(\mathrm{div}\overrightarrow{B}=0\)
電磁誘導の法則
\(\mathrm{rot}\overrightarrow{E}=-\frac{\Large\partial\overrightarrow{B}}{\Large\partial t}\)

「ベクトル場の回転に対する回転」はベクトル解析での公式によりラプラス演算子(x,y,zでの2階偏微分を内積的な計算で作用させる演算子)を含む形になり、さらに途中計算で出てくる発散の項をガウスの法則(電場と磁場両方を使用)によって変形する事で波動方程式の形の微分方程式が得られる、というのが基本的な理論の流れです。

さらに「真空中」という条件を付ける事で電流密度の項を無視できるとすると比較的見やすい形の微分方程式となります。また、電場に対するスカラーポテンシャル(=電位)と磁場に対するベクトルポテンシャルからも同じく波動方程式を作る事ができて、特定の解を導出するにはそちらを使う方が簡単である場合もあります。

ナブラを使って書いた場合は次のようになります。

ナブラで書いた時
マクスウェル方程式
(微分形・ナブラ表示)
時間微分を含まない式
(電磁場の発散)
時間微分を含む式
(電磁場の回転)
電場の式電場に関するガウスの法則
\(\nabla\cdot\overrightarrow{E}=\frac{\Large\rho}{\Large\epsilon_0}\)
電磁誘導の法則
\(\nabla\times\overrightarrow{E}=-\frac{\Large\partial\overrightarrow{B}}{\Large\partial t}\)
磁場の式磁場に関するガウスの法則
\(\nabla\cdot\overrightarrow{B}=0\)
アンペールの法則
\(\nabla\times\overrightarrow{B}=\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\)

電磁波の式の導出の時には2階の時間微分を使うのでラプラス演算子を使うと表記が便利です。
これはナブラによって表記できますがベクトルに対してはdiv, rot, grad の簡単な組み合わせでは書けません。
ただしスカラー場に対しては∇φ = div(gradφ) の関係は成立します。

使う公式

■「ベクトル場の回転」に回転をさらに作用させた時の式

通常表示$$\mathrm{rot}\left(\mathrm{rot}\overrightarrow{F}\right)=\mathrm{grad}\left(\mathrm{div}\overrightarrow{F}\right)-\nabla^2\overrightarrow{F}$$
ナブラ使用時$$\nabla\times\left(\nabla\times\overrightarrow{F}\right)=\nabla\left(\nabla\cdot\overrightarrow{F}\right)-\nabla^2\overrightarrow{F}$$

■ラプラス演算子(∇または△)
【これは記号として定義するものです。スカラーに対してもベクトルに対しても使えます。】 $$\nabla^2\overrightarrow{F}=△\overrightarrow{F}= \left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)\overrightarrow{F}$$ $$=\frac{\partial^2\overrightarrow{F}}{\partial x^2}+\frac{\partial^2\overrightarrow{F}}{\partial y^2}+\frac{\partial^2\overrightarrow{F}}{\partial z^2}$$ ■勾配ベクトルや発散に対する時間による偏微分
勾配や発散で使われる偏微分は座標変数によるものであり、
微分可能(ここでは2階まで)な関数であれば偏微分の順序は入れ換える事ができるので $$\frac{\partial}{\partial t}(\mathrm{grad}\phi)=\mathrm{grad}\left(\frac{\partial\phi}{\partial t}\right)$$ $$\frac{\partial}{\partial t}\left(\mathrm{div}\overrightarrow{F}\right)=\mathrm{div}\left(\frac{\partial\overrightarrow{F}}{\partial t}\right)$$ のように式を変形できます。
■その他のベクトル解析の公式

  • スカラー場φに対して、∇φ=div (gradφ)
  • \(r=\sqrt{(x-a_1)^2+(y-a_2)^2+(z-a_3)^2}\)に対して、
    r≠0の時 ∇(1/r)=div {grad(1/r)}=0
  • \(\overrightarrow{r}=(x-a_1,\hspace{2pt}y-a_2,\hspace{2pt}z-a_3)\)
    \(\overrightarrow{R}=\frac{\Large 1}{\Large r}(x-a_1,\hspace{2pt}y-a_2,\hspace{2pt}z-a_3)\) の時、
    grad(φ/r)=φgrad(1/r)+(1/r)gradφ
    =\(-\frac{\Large\varphi}{\Large r^2}\overrightarrow{R}+\frac{\Large 1}{\Large r}\mathrm{grad}\varphi\)
  • grad(1/r)=-{1/(r)} \overrightarrow{r}
  • \(\mathrm{div}(r^n\overrightarrow{r})=(n+3)r^3\)
    特にn=-1の時、\(\mathrm{div}\overrightarrow{R}=\mathrm{div}\left(\frac{\Large 1}{\Large r}\overrightarrow{r}\right)=2r^{-1}=\frac{\Large 2}{\Large r}\)
  • (∂/∂x)r= (x―a)/r
  • φ)=∇φ+2(gradφ)・(gradφ)+∇φ
    (積の微分公式を2回使う事に由来。第2項は内積です。)
  • div(φ\(\overrightarrow{F}\))=(gradφ)・\(\overrightarrow{F}\)+φdiv\(\overrightarrow{F}\)

以下ではラプラス演算子のみナブラ記号による∇を使用し、
その他は div, grad 等の表記を使います。それらは全てナブラ記号で表現する事は可能です。

電場についての波動方程式の導出

電場と磁場の両方についてかなり似た操作でそれぞれについての波動方程式を導出できます。電磁誘導の法則とアンペールの法則をそれぞれ使いますが、実は計算の過程において電場と磁場の場合の両方でマクスウェル方程式のうち3つを使う事になります。

電場についての波動方程式を導出する時には、まず電磁誘導の法則の式から始めます。

電磁誘導の法則の微分形\(\mathrm{rot}\overrightarrow{E}=-\frac{\Large\partial\overrightarrow{B}}{\Large\partial t}\)
両辺に回転を作用させる

右辺は磁場の回転に対する
時間微分として書ける
\(\mathrm{rot}\left(\mathrm{rot}\overrightarrow{E}\right)=-\mathrm{rot}\left(\frac{\Large\partial\overrightarrow{B}}{\Large\partial t}\right)\)

\(\Leftrightarrow\mathrm{rot}\left(\mathrm{rot}\overrightarrow{E}\right)=-\frac{\Large\partial}{\Large\partial t}\left(\mathrm{rot}\overrightarrow{B}\right)\)
アンペールの法則
右辺に代入して
電場だけの式にする
◆時間による2階微分は
ここで生じます。
\(\mathrm{rot}\left(\mathrm{rot}\overrightarrow{E}\right)=-\frac{\Large\partial}{\Large\partial t}\left\{\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\right\}\)
\(=-\mu_0\frac{\Large\partial\overrightarrow{j}}{\Large\partial t}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{E}}{\Large\partial t^2}\)
左辺に公式を適用して変形\(\mathrm{grad}\left(\mathrm{div}\overrightarrow{E}\right)-\nabla^2\overrightarrow{E}=-\mu_0\frac{\Large\partial\overrightarrow{j}}{\Large\partial t}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{E}}{\Large\partial t^2}\)
電場に関する
ガウスの法則
を左辺に代入
\(\mathrm{grad}\left(\frac{\Large\rho}{\Large\epsilon_0}\right)-\nabla^2\overrightarrow{E}=-\mu_0\frac{\Large\partial\overrightarrow{j}}{\Large\partial t}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{E}}{\Large\partial t^2}\)
\(\Leftrightarrow\frac{\Large 1}{\Large\epsilon_0}\mathrm{grad}\rho-\nabla^2\overrightarrow{E}=-\mu_0\frac{\Large\partial\overrightarrow{j}}{\Large\partial t}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{E}}{\Large\partial t^2}\)
電場の項とその他を
左辺と右辺に分けて整理
\(\Leftrightarrow\frac{\Large 1}{\Large\epsilon_0}\mathrm{grad}\rho+\mu_0\frac{\Large\partial\overrightarrow{j}}{\Large\partial t}=\nabla^2\overrightarrow{E}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{E}}{\Large\partial t^2}\)
\(\Leftrightarrow\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\overrightarrow{E}=\frac{\Large 1}{\Large\epsilon_0}\mathrm{grad}\rho+\mu_0\frac{\Large\partial\overrightarrow{j}}{\Large\partial t}\)
真空中で電荷密度と
電流密度が0であると
すると、
3次元の波動方程式
の形になる
真空中を想定してρ=0および\(\overrightarrow{j}\)=0であるとすると

\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\overrightarrow{E}=0\)
\(\left(\Leftrightarrow\nabla^2\overrightarrow{E}=\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\overrightarrow{E}としても可\right)\)

以上の式では、εμの項が出てきた時点で
光の速さcを使った形である1/(c)に直して計算を進める事もできます。結果は同じです。

磁場についての波動方程式の導出

磁場についてもアンペールの法則から始めて。同様の手順でやれば波動方程式を導出できます。

アンペール法則の微分形\(\mathrm{rot}\overrightarrow{B}=\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\)
両辺に回転を作用させる

右辺は電場の回転に対する
時間微分として書ける
\(\mathrm{rot}\left(\mathrm{rot}\overrightarrow{B}\right)=\mathrm{rot}\left\{\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\right\}\)

\(\Leftrightarrow\mathrm{rot}\left(\mathrm{rot}\overrightarrow{B}\right)=\mu_0\mathrm{rot}\overrightarrow{j}+\epsilon_0\mu_0\frac{\Large\partial}{\Large\partial t}\left(\mathrm{rot}\overrightarrow{E}\right)\)
電磁誘導の法則
右辺に代入して
磁場だけの式にする
◆時間による2階微分は
先ほどと同じく
ここで生じます。
\(\mathrm{rot}\left(\mathrm{rot}\overrightarrow{B}\right)=\mu_0\mathrm{rot}\overrightarrow{j}+\epsilon_0\mu_0\frac{\Large\partial}{\Large\partial t}\left(-\frac{\Large\partial\overrightarrow{B}}{\Large\partial t}\right)\)
\(=\mu_0\mathrm{rot}\overrightarrow{j}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{B}}{\Large\partial t^2}\)
左辺に公式を適用して変形\(\mathrm{grad}\left(\mathrm{div}\overrightarrow{B}\right)-\nabla^2\overrightarrow{B}=\mu_0\mathrm{rot}\overrightarrow{j}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{B}}{\Large\partial t^2}\)
磁場に関する
ガウスの法則
を左辺に代入
(勾配の項は0になる。)
\(\mathrm{grad}0-\nabla^2\overrightarrow{B}=\mu_0\mathrm{rot}\overrightarrow{j}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{B}}{\Large\partial t^2}\)
\(\Leftrightarrow-\nabla^2\overrightarrow{B}=\mu_0\mathrm{rot}\overrightarrow{j}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{B}}{\Large\partial t^2}\)
磁場だけの項と
それ以外を分けて
式を整理
\(\Leftrightarrow-\nabla^2\overrightarrow{B}+\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{B}}{\Large\partial t^2}=\mu_0\mathrm{rot}\overrightarrow{j}\)
\(\Leftrightarrow\nabla^2\overrightarrow{B}-\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{B}}{\Large\partial t^2}=-\mu_0\mathrm{rot}\overrightarrow{j}\)
真空中で電荷密度と
電流密度が0であると
すると、
3次元の波動方程式
の形になる
真空中を想定して\(\overrightarrow{j}\)=0であるとすると

\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\overrightarrow{B}=0\)
\(\left(\Leftrightarrow\nabla^2\overrightarrow{B}=\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\overrightarrow{B}としても可\right)\)

ポテンシャルによる電磁場の波動方程式の導出

電場のスカラーポテンシャルと磁場のベクトルポテンシャルから波動方程式(および一般の形の方程式)を作る事もできます。

この場合、まず電磁誘導の法則の微分形をベクトルポテンシャルを使った形にします。

ベクトルポテンシャルで
表した磁場
電磁誘導の法則の微分形ベクトルポテンシャルで
表した電磁誘導の法則
\(\mathrm{rot}\overrightarrow{A}=\overrightarrow{B}\)\(\mathrm{rot}\overrightarrow{E}=-\frac{\Large\partial\overrightarrow{B}}{\Large\partial t}\)\(\mathrm{rot}\overrightarrow{E}= -\frac{\Large\partial}{\Large\partial t}\mathrm{rot}\overrightarrow{A}\)
\(\Leftrightarrow\hspace{2pt} \mathrm{rot} \left(\overrightarrow{E}+\ \frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\right)=0\)

ここで、静電場に対する渦無しの法則を考えた時と同様に
「回転が0であるベクトル場」は何かのスカラー場の勾配として書けます。

そのスカラー場を考えて磁場の時間変化が無い時は電位に等しくなるように-Φとします。そのようにおいた式の両辺の発散を考えると式をラプラス演算子で表せます。

スカラー場Φを考えます。
(一般の場合の電場に対する
スカラーポテンシャル)
\(-\mathrm{grad}\phi=\overrightarrow{E}+ \frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\)となるΦが存在する。
両辺の発散を考えます。
すると、左辺は
ラプラス演算子∇
表す事ができます。
\(-\mathrm{div}\left(\mathrm{grad}\phi\right)=\mathrm{div}\left(\overrightarrow{E}+\frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\right)\)
\(\Leftrightarrow -\nabla^2\phi=\mathrm{div}\left(\overrightarrow{E}+\ \frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\right)\)
(※スカラー場に対しては∇Φ=div(gradΦ)が成立。
ベクトルに対しては同様の簡単な関係式は作れません。)

ところでベクトルポテンシャルのゲージ条件はまだ何も決めていないので、少し唐突で無理やり感もあるように見えるかもしれませんが次のゲージ条件を課します。

ここで使うゲージ条件

このゲージ条件を特に「ローレンツ条件」と呼ぶ事があります。 $$\mathrm{div}\overrightarrow{A}+\epsilon_0\mu_0\frac{\partial\phi}{\partial t}=0$$ $$\left(あるいは光の速さcを使って\mathrm{div}\overrightarrow{A}+\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0\right)$$ 下記では、この式の時間微分を考えたものと、勾配を考えたものも使用します。
■時間微分をしたもの $$\frac{\partial}{\partial t}\mathrm{div}\overrightarrow{A}+\epsilon_0\mu_0\frac{\partial^2\phi}{\partial t^2}=0$$ $$\Leftrightarrow\mathrm{div}\frac{\partial\overrightarrow{A}}{\partial t}+\epsilon_0\mu_0\frac{\partial^2\phi}{\partial t^2}=0$$ $$\Leftrightarrow\mathrm{div}\frac{\partial\overrightarrow{A}}{\partial t}=-\epsilon_0\mu_0\frac{\partial^2\phi}{\partial t^2}$$ ■勾配を考えたもの $$\mathrm{grad}\left(\mathrm{div}\overrightarrow{A}\right)+\mathrm{grad}\left(\epsilon_0\mu_0\frac{\partial\phi}{\partial t}\right)=0$$ $$\Leftrightarrow\mathrm{grad}\left(\mathrm{div}\overrightarrow{A}\right)=-\left(\epsilon_0\mu_0\frac{\partial}{\partial t}\mathrm{grad\phi}\right)$$ $$電磁誘導の法則に由来する-\mathrm{grad}\phi=\overrightarrow{E}+\frac{\partial\overrightarrow{A}}{\partial t}を使って、$$ $$\mathrm{grad}\left(\mathrm{div}\overrightarrow{A}\right)= \epsilon_0\mu_0\frac{\partial}{\partial t}\left(\overrightarrow{E}+\frac{\partial}{\partial t}\overrightarrow{A}\right) = \epsilon_0\mu_0\frac{\partial\overrightarrow{E}}{\partial t}+\epsilon_0\mu_0\frac{\partial^2\overrightarrow{A}}{\partial t^2}$$

磁場に関するガウスの法則はベクトルポテンシャルを考える事自体に使っている事に注意すると、先ほどの電磁誘導の法則をポテンシャルで考えた式を考えた時点でまだ使っていないマクスウェル方程式は電場に関するガウスの法則とアンペールの法則です。

そこで電磁誘導の法則から得られたベクトルポテンシャルとスカラーポテンシャルの関係式を、同じくポテンシャルで表した電場に関するガウスの法則とアンペールの法則に代入して上記のゲージ条件を適用すると波動方程式が得られます。

電場のスカラーポテンシャルの場合

電場に関するガウスの法則(微分形)\(\mathrm{div}\overrightarrow{E}=\frac{\Large\rho}{\Large\epsilon_0}\)
一般形のスカラーポテンシャルで表した
電場に関するガウスの法則
\(-\mathrm{div}\left(\mathrm{grad}\phi+\frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\right)=\frac{\Large\rho}{\Large\epsilon_0}\)
【ゲージ条件から】
\(\mathrm{div}\frac{\Large\partial\overrightarrow{A}}{\Large\partial t}=-\epsilon_0\mu_0\frac{\Large\partial^2\phi}{\Large\partial t^2}\)
【スカラー場で成立する式】
Φ=div(gradΦ)
\(-\nabla^2\phi+\epsilon_0\mu_0\frac{\Large\partial^2\phi}{\Large\partial t^2}=\frac{\Large\rho}{\Large\epsilon_0}\)
\(\Leftrightarrow\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\phi=-\frac{\Large\rho}{\Large\epsilon_0}\)
電荷密度を0とみなせる
場合には波動方程式の形
\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)\phi=0\)

この結果は、ベクトルではなくスカラー場の波動方程式になっています。

また、ポテンシャルで考える場合には電磁場を考える地点での電荷密度を0と考えずに一般形のまま計算をする事がよくあります。さらに、後述するこの微分方程式の解となる式においては電磁場およびポテンシャルを考えている地点とは別の領域に存在する電荷密度の分布を考えます。
それは電位やベクトルポテンシャルを考える時にも使う考え方ではありますが、紛らわしい事もあり注意が必要な点とも言えます。

磁場のベクトルポテンシャルの場合

磁場の場合はアンペールの法則の微分形から始めて、計算式が一見少し複雑になりますが波動方程式の形に変形できます。

アンペールの法則の微分形\(\mathrm{rot}\overrightarrow{B}=\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\)
\(\overrightarrow{B}=\mathrm{rot}\overrightarrow{A}\)を代入
回転に関する公式により変形
\(\mathrm{rot}\left(\mathrm{rot}\overrightarrow{A}\right)=\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\)
\(\Leftrightarrow\mathrm{grad}\left(\mathrm{div}\overrightarrow{A}\right)-\nabla^2\overrightarrow{A}=\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\)
【ゲージ条件から】
\(\mathrm{grad}\left(\mathrm{div}\overrightarrow{A}\right)\)
\(=\epsilon_0\mu_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}+\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{A}}{\Large\partial t^2}\)
代入すると電場の項
(変位電流の部分)
が消えます。
\(\epsilon_0\mu_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}+\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{A}}{\Large\partial t^2}-\nabla^2\overrightarrow{A}\)
\(=\mu_0\left(\overrightarrow{j}+\epsilon_0\frac{\Large\partial\overrightarrow{E}}{\Large\partial t}\right)\)
両辺に同じ係数の変位電流の項があり、消える。
\(\epsilon_0\mu_0\frac{\Large\partial^2\overrightarrow{A}}{\Large\partial t^2}-\nabla^2\overrightarrow{A}=\mu_0\overrightarrow{j}\)
整理するとこの形\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial}{\Large\partial t^2}\right)\overrightarrow{A}=-\mu_0\overrightarrow{j}\)
電流密度を0とみなせる
場合には波動方程式の形
\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial}{\Large\partial t^2}\right)\overrightarrow{A}=0\)

ここでは静電場に限定せず一般の電場を考えているので、
電場のスカラーポテンシャルは\(\overrightarrow{E}=-\mathrm{grad}\phi\)(静電場の場合)ではなく、
上記の
\(-\mathrm{grad}\phi=\overrightarrow{E}+\frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\)
\( \Leftrightarrow\overrightarrow{E}=-\mathrm{grad}\phi-\frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\)を使用しています。

平面波解として得られる電磁波の式

ベクトルに対する偏微分方程式も、
成分ごとに見ればスカラー関数に対する偏微分方程式になります。例えば、
\(\left(\nabla^2-\epsilon_0\mu_0\frac{\Large\partial^2}{\Large\partial t^2}\right)E_x=0\)などです。

これの解の1つとして比較的簡単で代表的なものは次のような平面波です。
(以下、c=1/\(\sqrt{\epsilon_0\mu_0}\)であるとします。)

平面電磁波の式【電場のx成分についての波動方程式の解の1つ】

2階まで微分可能である任意の2つの関数U(u)とW(w)を使って、
変数をz-ctとz+ctとして電場のx成分について
=U(z-ct)+W(z+ct)
のような関数形を考えます。(xとyに関しては変数ではない関数。)
すると、実はこれは真空中の電場に関する波動方程式の解になっており、
平面電磁波あるいは単に平面波を表すものになります。

これは一体何を言っているのかという話ですが、U(z-ct)は進行波でW(z+ct)が反射波を表します。さらにxとyは変数ではないという関数形である事は「z軸方向に進行していく」事を表します。

※この段階では「波」と言っても周期関数に限らず、何らかの「波形」の関数が時間ごとに進行していくものです。また、zだけが特別扱いというわけではなく、U(y-ct)+W(y+ct)のような関数を考えればこれはy方向に進行していく「波」を表します。
いずれにしても、定数cはそれが進行していく速さを表すわけで、εμ=1/(c2)の関係式によって「電磁波が進行する速さは光の速さに等しい」という事を表しています。
最初のほうで少し触れたように、具体的な正弦波などの関数を想定する場合には波としての速さと関数に対する変数の部分(位相)との間に関係式を作る必要な事があります。
例えばここでの場合で進行波としての正弦関数を考える時には、
振幅E0と波数 k に対してE0sin(ku)の形の式にu=zーctを代入して
E0sin(kz-kct)=E0sin(kz-ωt)のようにします。

上記の式が確かに波動方程式の解になっているかどうかについては直接計算すればよいのですが、意外と少し面倒くさくて変数と微分の関係などに注意する必要があります。(微分をしていくだけの計算問題になるので、記述は後回しにします。)

電場のx成分とy成分が平面電磁波を表す形であるとして、
磁場に関してもx瀬尾文とy成分が同様の形であるとします。
∂E/∂x=0と∂E/∂y=0および∂E/∂x=0と∂E/∂y=0などの関係をマクスウェル方程式に戻って当てはめていくと、他の成分についても決定するものが複数あります。
それらを整理すると次のようになります。

平面電磁波における電場と磁場の成分の関係式
=U(z-ct)+W(z+ct)および
=U(z-ct)+W(z+ct)から
∂E/∂x=∂E/∂y=0
∂E/∂x=∂E/∂y=0
磁場に関しても波動方程式は
同じ形なのでBとB
zとtのみの関数だとして
∂B/∂x=∂B/∂y=0
∂B/∂x=∂B/∂y=0
電場に関するガウスの法則で
電荷密度ρが0のもとで
∂E/∂x+∂E/∂y+E/∂z=0
により∂E/∂z=0
磁場に関するガウスの法則より∂B/∂x+∂B/∂y+B/∂z=0
により∂B/∂z=0
/∂z=0を波動方程式に当てはめて∂E/∂t=0
電磁誘導の法則の微分形の
z成分を考えると
∂E/∂x-∂E/∂y=-∂B/∂tより
∂B/∂t=0

∂E/∂z=0である事を踏まえて、
さらにEがxとyに関しても定数だとしても波動方程式を満たすのでそのようなものを考えます。
つまりその場合は∂E/∂x=∂E/∂y=0です。

その条件下では、電磁誘導の法則のx成分とy成分から
∂E/∂z=∂B/∂t
∂E/∂z=-∂B/∂t
という関係が得られます。

その事から、その条件下で電場と磁場のx成分とy成分の関係は次のようになります。


=U(z-ct)+W(z+ct)
B
=(1/c){-U(z-ct)+W(z+ct)}
∂E/∂z
=∂B/∂t

=U(z-ct)+W(z+ct)
B
=(1/c){U(z-ct)-W(z+ct)}
∂E/∂z
=-∂B/∂t

もし進行波と反射波が別々のベクトルであるとするなら、電磁波の進行方向に対して垂直な平面内で進行波における電場と磁場は直交し、反射波における電場と磁場も直交する事になります。

進行波と反射波が
別々のベクトル
という仮定
電場磁場進行方向に垂直な
平面内での電場と磁場の内積
入射波Ex1=U
Ey1=U
Bx1=-U/c
By1=U/c
(1/c)(-UU+UU)=0
反射波Ex2=W
Ey2=W
Bx2=W/c
By2=-W/c
(1/c)(WW-WW)=0

電磁波における電場と磁場の成分が正弦波あるいはその重ね合わせであると考えると、平面電磁波の電場と磁場の成分が進行方向に垂直である事は「波数ベクトル」との内積が0になる事でも示せます。

=U(z-ct)+W(z+ct)が波動方程式の解である事を見るには次にようにします。
Z=z-ct,Z=z+ctとするとE=U(Z)+W(Z)であり,
(∂/∂t)E=(dU/dZ) (∂Z/∂t)+(dW/dZ) (∂Z/∂t)
=-c(dU/dZ)+(dW/dZ)

【※もしU(P(z,t),Q(z,t))のような関数なら
∂U/∂t=(∂U/∂P)(∂P/∂t)+(∂U/∂Q)(∂Q/∂t)のような計算になります。
ここでは∂z/∂t=0なので見かけ上はその項が無い形になっています。 】
さらに計算すると、
(∂/∂t)E=-c(dU/dZ) (∂Z/∂t)+c(dU/dZ) (∂Z/∂t)
=-c(dU/dZ)+c(dU/dZ)

同様にして、
(∂/∂z)E=(∂/∂z){(dU/dZ) (∂Z/∂z)+(dW/dZ) (∂Z/∂z)}
=(∂/∂z){(dU/dZ)+(dW/dZ)}
=(dU/dZ) (∂Z/∂z)+(dU/dZ) (∂Z/∂t)
=(dU/dZ)+(dU/dZ)

よって、{∂/∂z-(1/c) (∂/∂t)}E=0であり、
=U(Z)+W(Z)はzとtだけの関数という設定なので
xとyによる偏微分は0である事に注意すると
{∇-(1/c) (∂/∂t)}E=0
を満たす事が分かります。
y成分についても同じ変数の形Z,Zと、異なる関数形U,Wを考えて
=U(Z)+W(Z)
というzとtだけの関数として計算すれば波動方程式を満たします。

ポテンシャルによる計算から得られる電磁波の式

ポテンシャルを使ったほうの波動方程式を解くと、少し別の形の数式での電磁波の式を得ます。

スカラーポテンシャルにしてもベクトルポテンシャルにしても、静電場と静磁場の場合には積分の形はとるけれども一応微分方程式の解としてポテンシャルを数式で表す事は可能です。

そして前述のポテンシャルの波動方程式および一般の形の式(ρ≠0等の場合)でも、実はかなり似た形の式が解になります。

静電場や静磁場に限定した時と異なる点は、電荷密度と電流密度に変数として加わる「時間」の部分です。そしてその時間変数は、空間中で電磁波による電磁場を考えている地点と、電磁場を作っている電荷や電流がある領域との時間変化における「時刻」のずれが反映された形にする必要がある事が知られています。

具体的には、まず平面波を表す解で得られた電磁波の速さc=\(\sqrt{\epsilon_0\mu_0}\)が一般に適用できるものだと仮定して、電荷や電流の各位置から電磁場を考える位置までの距離をrとします(これは関数)。

そして、電荷や電流の時間変数をtとした時に、その変数をt-r/cに置き換えたものを考えます。
これはrという位置座標の関数を含むのでx,y,z,tの関数です。
そこでT(x,y,z,t)=t-r/cとおいておきます。

前述のポテンシャルで表した場合の真空中の波動方程式、および電荷密度あるいは電流密度が0でない場合の式における解の1つは次式で表されます。

ポテンシャルによる波動方程式(ρ≠0の場合等の一般形含む)の解

ポテンシャルであるΦと\(\overrightarrow{A}\),および積分していないρや\(\overrightarrow{j}\)は
x,y,zおよびtの関数であるとします。
電荷あるいは電流密度が分布する領域をVとして、
dv=dXdYdXのもとで
(x,y,z)と(X,Y.Z)の距離をrとおき、 T=t-r/c のもとで
積分中の電荷密度ρと電流密度\(\overrightarrow{j}\)はX,Y,Z,T(=t-r/c)の関数であるとします。

式と解もとの式(波動方程式を含む一般形)解となるポテンシャル
電場$$\left(\nabla^2-\epsilon_0\mu_0\frac{\partial^2}{\partial t^2}\right)\phi=-\frac{\rho}{\epsilon_0}\hspace{20pt}$$$$\phi=\frac{1}{4\pi\epsilon_0}\int_V\frac{\rho}{r}dv$$
磁場 $$\left(\nabla^2-\epsilon_0\mu_0\frac{\partial}{\partial t^2}\right)\overrightarrow{A}=-\mu_0\overrightarrow{j}$$$$\overrightarrow{A}=\frac{\mu_0}{4\pi}\int_V\frac{\overrightarrow{j}}{r}dv$$

これらの解は遅延ポテンシャル(retarded potential)とも呼ばれます。
積分の中身とそれ以外の部分で関数が何の変数であるかを整理すると次のようになります。

◆x,y,z,tの関数
電場や磁場を考える位置と時間
◆X,Y,Z,Tの関数【積分の中身】
電荷密度や電流密度の分布内の位置
\(\phi=\phi(x,y,z,t)\)
\(\overrightarrow{A}=\overrightarrow{A}(x,y,z,t)\)
\(\rho=\rho(X,Y,Z,T)\)
\(\overrightarrow{j}=\overrightarrow{j}(X,Y,Z,T)\)

時間変数に関しては T=T(x,y,z,X,Y,Z,t)であり、x,y,z,X,Y,Z,t は互いに独立な変数です。
また、\(r=r(x,y,z,X,Y,Z)\) であり、積分に関してはx,y,zは定数扱いです。

また、ポテンシャルから計算できる電場と磁場は次のようになります。

遅延ポテンシャルから計算される電場と磁場

■電場
\(-\mathrm{grad}\phi=\overrightarrow{E}+ \frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\Leftrightarrow\overrightarrow{E}=-\mathrm{grad}\phi-\frac{\Large\partial\overrightarrow{A}}{\Large\partial t}\)である事と、
電荷密度の分布は領域内で微分可能(従って連続)である関数形である事
(X,Y,Zが積分変数の被積分関数をx,y,zやtで偏微分してから積分可能)、
ベクトルポテンシャルの項は静磁場の時の式を使ってεμ=1/(c )の関係に注意します。
積分内で電荷密度と電流密度は先ほどと同じくX,Y,Z,Tの関数とします。
電場と磁場はx,y,z,tの関数です。また、\(\overrightarrow{R}=\frac{\Large 1}{\Large r}(x-X,\hspace{2pt}y-Y,\hspace{2pt}z-Z)\)とします。 $$\overrightarrow{A}=\frac{\mu_0}{4\pi}\int_V\frac{\overrightarrow{j}}{r}dv=\frac{1}{4\pi\epsilon_0c^2}\int_V\frac{\overrightarrow{j}}{r}dvに注意して、$$ $$\overrightarrow{E}=-\mathrm{grad}\left(\frac{1}{4\pi\epsilon_0}\int_V \frac{\rho}{r}dv\right)-\frac{\partial\overrightarrow{A}}{\partial t}$$ $$=\frac{1}{4\pi\epsilon_0}\int_V\left(\frac{\rho}{r^2}\overrightarrow{R}+\frac{\rho}{cr}\overrightarrow{R}-\frac{\partial }{\partial t}\frac{\overrightarrow{j}}{c^2r}\right)dv$$ ■磁場
回転と外積ベクトルの関係に注意して計算すると\(\mathrm{rot}\overrightarrow{A}=\overrightarrow{B}\)により、次式になります。
積分中のクロス「×」記号は外積の意味です。 $$\overrightarrow{B}=\mathrm{rot}\overrightarrow{A}=\frac{\mu_0}{4\pi}\int_V\left(\frac{\overrightarrow{j}}{r^2}\times\overrightarrow{R}+\frac{\overrightarrow{j}}{cr}\times\overrightarrow{R}\right)dv$$ これらの式は、時間変化する電荷密度や電流密度(具体的には周波数の高い交流電流など)によって電磁波を形成する電場と磁場の関数形を具体的に表せる事を意味しています。
また、電磁波が正弦波のような周期関数になるかどうかも、領域Vに分布する電荷密度や電流密度の形で決まる事になります。
式に積分が含まれている事を見ると分かる通り、実際に詳しく考察する時には工夫が必要です。
これらの式においてrが十分大きい時には1、/rに比例する項に比べて他の項をほぼ0とみなして近似する事ができます。

遅延ポテンシャルが解となっている事の確認計算

先ほどの「遅延ポテンシャル」が波動方程式を作るポテンシャルの式を満たすのかどうかは、少々長ったらしい計算が必要ですが確認する事ができます。

まず、スカラーポテンシャルのほうを見ます。ベクトルポテンシャルについても、成分ごとに見ればスカラーポテンシャルの時と同様に計算ができます。

と発散、勾配はいずれもx,y,zの変数での偏微分を行うものとします。

必要な計算
何を計算していくのか?電場のスカラーポテンシャルについて
電磁場に関する
波動方程式の一般形となるこの式に対して
$$\left(\nabla^2-\epsilon_0\mu_0\frac{\partial^2}{\partial t^2}\right)\phi=-\frac{\rho}{\epsilon_0}$$
このように表されるΦを代入して
式が満たされるのかを検証。
$$\phi=\frac{1}{4\pi\epsilon_0}\int_V\frac{\rho}{ r}dv$$

積分の中身ρ/rについてラプラス演算子を作用させると、公式を使って
(ρ/r)=∇ρ+2{grad(1/r)}・(gradρ)+ρ∇(1/r)

ここでρ∇(1/r)の項に関してはr≠0であれば∇(1/r)=0になります。【ただし、電磁波の電場を考える点(x,y,z)が領域V内にあるような状況(r=0という事)があっても、極限値として考えれば実はこの項は積分をした時に有限の値になります。】
そこで、計算が必要なのは残りの2項になります。

  • ρ
  • 2{grad(1/r)}・(gradρ)

ρとrは積分の中にあり、
ρ=ρ(X,Y,Z,T) と r=r(x,y,z,X,Y,Z) の変数に注意して計算します。

勾配ベクトルの内積部分の計算

勾配ベクトルの内積部分の計算を先に見ます。

積分内のρの変数であるX,Y,Z,Tのうち
x,y,zの関数であるのはTだけです。
∂ρ/∂x=(∂ρ/∂T) (∂T/∂x)
【本来、数学的な計算としては∂ρ/∂x=(∂ρ/∂T) (∂T/∂x)+(∂ρ/∂X) (∂X/∂x)+・・・で、
∂X/∂x=0,∂Y/∂x=0,∂Z/∂x=0なので(∂ρ/∂X)(∂X/∂x)等の項は0】

ここでT=t-r/cなので、
∂T/∂x=-(∂/∂x) (r/c)=-(x-X)/(rc) であり、
∂ρ/∂x=(∂ρ/∂T) (∂T/∂x)=-{(x-X)/(rc)}(∂ρ/∂T)

他方でT=t-r/cをtで偏微分すると∂T/∂t=1であり、
∂x/∂tや∂X/∂t等は0なので
∂ρ/∂t=(∂ρ/∂T) (∂T/∂t)+(∂ρ/∂x) (∂x/∂t)+(∂ρ/∂y) (∂y/∂t)+・・・
=(∂ρ/∂T) (∂T/∂t)
=∂ρ/∂T

独立変数の関係にあるのはx,y,z,X,Y,Z,tであるので
【考えている位置自体は運動していないのでx=x(t)等の関係は無く、xとtは定数の関係。】
x,y,z,X,Y,Zに対するtの偏微分は0(例えば∂x/∂t=0など)

つまり∂ρ/∂t=∂ρ/∂Tの関係があるので
先ほどの式は
∂ρ/∂x=-{(x-X)/(rc)}(∂ρ/∂t)と書けます。
【Tによる偏微分ではなくtによる偏微分でも同じ結果になるという事。】

これらの事はyやzについても同様の計算で、時間変数による偏微分はtで書けます。
∂ρ/∂y=-(y-Y)(∂ρ/∂t)/(rc)
∂ρ/∂z=-(z-Z)(∂ρ/∂t)/(rc)となるので
\(\overrightarrow{R}=\frac{\Large 1}{\Large r}(x-X,y-Y,z-Z)\) とすると、
gradρ=-(1/c) (∂ρ/∂t)\(\overrightarrow{R}\)

ここで、grad(1/r)=-\(\overrightarrow{R}\)/(r)であり、
\(\overrightarrow{R}\)の大きさは1である事に注意すると∇(Φ/r)の式中の内積計算は
2{grad(1/r) }・(gradρ)={-2/(r) } {-(1/c) (∂ρ/∂t) }
={2/(cr) } (∂ρ/∂t)

【この項は、あとで消えます。】

電荷密度に対する∇ρの部分の計算

また、スカラー関数についてはρ=div(gradρ)なので、div(gradρ)を計算します。
grad(∂ρ/∂t)については先ほどのgradρ=-(1/c) (∂ρ/∂t)\(\overrightarrow{R}\)と同じ形の計算が可能で、
grad(∂ρ/∂t)gradρ=-(1/c) (∂ρ/∂t)\(\overrightarrow{R}\)

\(\overrightarrow{R}\) の大きさはr/r=1である事に注意して、
公式div(φ\(\overrightarrow{F}\))=(gradφ)・\(\overrightarrow{F}\)+Φdiv\(\overrightarrow{F}\) および
div\(\overrightarrow{R}\)=2/rも使用すると次のようになります。

$$\nabla^2\left(\mathrm{grad}\rho\right)=\mathrm{div}\left(\mathrm{grad}\rho\right)$$

$$=\mathrm{div}\left\{-\frac{1}{c}\frac{\partial \rho}{\partial t}\overrightarrow{R}\right\}=-\frac{1}{c}\left\{\left(\mathrm{grad}\frac{\partial \rho}{\partial t}\right)\cdot\overrightarrow{R}+\frac{\partial \rho}{\partial t}\mathrm{div}\overrightarrow{R}\right\}$$

$$=-\frac{1}{c}\left\{-\frac{1}{c}\left(\frac{\partial^2 \rho}{\partial t^2}\overrightarrow{R}\right)\cdot\overrightarrow{R}+\frac{2}{r}\frac{\partial \rho}{\partial t}\right\}$$

$$=\frac{1}{c^2}\frac{\partial^2 \rho}{\partial t^2}-\frac{2}{cr}\frac{\partial \rho}{\partial t}$$

これを見ると、式の最後の形の2項目の-{2/(cr)} (∂ρ/∂t)に1/rを乗じると
先ほどの2{grad(1/r)}・(gradρ)={2/(cr)} (∂ρ/∂t)に加えれば0になる事が分かります。

よって、ここで式を一度整理すると次式になります。

$$\nabla^2\left(\frac{\rho}{r}\right)=\frac{1}{r}\nabla^2\left(\mathrm{grad}\rho\right)+2\left\{\mathrm{grad}\left(\frac{1}{r}\right)\right\}\cdot(\mathrm{grad}\rho)+\rho\nabla^2\left(\frac{1}{r}\right)$$

$$=\frac{1}{c^2r}\frac{\partial^2 \rho}{\partial t^2}+\rho\nabla^2\left(\frac{1}{r}\right)$$

この式に1/(4πε)を乗じて領域Vで体積積分します。
【ベクトルポテンシャルの成分の時には、ここでμ/(4π)を乗じます。】

$$\frac{1}{4\pi\epsilon_0}\int_V\nabla^2\left(\frac{\rho}{r}\right)dv=\frac{1}{4\pi\epsilon_0}\int_V\left\{\frac{1}{c^2r}\frac{\partial^2 \rho}{\partial t^2}+\rho\nabla^2\left(\frac{1}{r}\right)\right\}dv$$

$$整理すると、\left(\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\left(\frac{1}{4\pi\epsilon_0}\int_V\frac{\rho}{r}dv\right)=\frac{1}{4\pi\epsilon_0}\int_V\rho\nabla^2\left(\frac{1}{r}\right)dv$$

r≠0の時はρ∇(1/r)=0なので波動方程式の形を満たす事が分かります。

$$r\neq 0であるなら、\left(\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\left(\frac{1}{4\pi\epsilon_0}\int_V\frac{\rho}{r}dv\right)=0$$

ではr=0になるような点を含む場合ではどうかというと、その場合でも遅延ポテンシャルの形の式は積分をした時に極限を考える形でρ≠0の場合の方程式を満たします。(デルタ関数で考える事も多い。)また、遅延ポテンシャルによる解は実はかなり一般性を持った形の解でもあります。

直交曲線座標系の成分にベクトルを変換する方法

物理学などでは、微分方程式を座標変換して考える時があります。
例えば極座標における運動方程式や波動方程式を考えてみるといった事です。

そのような場合で特にベクトルを含む微分方程式を考える時には、
x=rcosθ等の関係の代入だけでなくベクトルの基本ベクトルを変更する事まで行う事があります。
普通はベクトルを成分で表す時には(x座標,y座標,z座標)で考えるわけですが、
それを(r座標,θ座標,φ座標)で表す事を意味します。
例えば運動方程式であれば加速度ベクトルや力ベクトルをそのように扱うという事です。

以下、微分も使いながら具体的な変換の方法などを詳しく説明します。

■この記事に特に関連が深い数学的な事項は方向余弦に関する内容と、極座標および球面座標に関する内容です。その他、記事の後半では微分に関する基本公式のいくつかを使用しています。ベクトルと三角関数に関する基本的な事項も使います。

基本ベクトルの変更をする必要がある場合と無い場合

極座標変換等をする場合の微分方程式については、
基本ベクトルを変更する必要がある場合と無い場合があります。

まず、変更の必要が無い場合を見てみましょう。

例えば「等速円運動をしている物体には常に中心力が働いている」という事を
運動方程式を使って示そうとするような場合です。
この時には物体の座標に対して極座標変換を行ってから時間微分を2回行って、
普通に運動方程式に当てはめて力ベクトルを計算する事には何の問題もありません。
このような場合は、極座標変換を使っていても基本ベクトルの変更が必要ない場合です。

少しややこしいようですがそのような場合には、
x=rcos(ωt) のような極座標変換は確かに行ってはいるけれども、
ベクトルの座標成分としては直交座標によるものを考えている
」のです。
ですので極座標による値によって計算をするとしても、
その結果は「xyz直交座標系のx軸で測った値」を出しているわけです。

もう少し詳しく見ると、そのような場合には極座標変換を使用していますがベクトルとして考えている加速度ベクトルや力ベクトルは成分を「x成分」「y成分」「z成分」として考えています。図的にはx軸、y軸、z軸に平行なベクトルの合計として1つの加速度ベクトルや力ベクトルを構成します。

では、加速度や力のベクトルを直交座標ではない成分表示で「r成分」「θ成分」「φ成分」のように表して、図的にも「ある点での曲線の接線方向」を向いたベクトルの合計として1つの加速度ベクトルや力ベクトルを構成できるのか?
という事を考えると、結論を言うと「それは可能である」という事になるのです。

そのような場合の運動方程式は「力が質量と加速度に比例する」という関係は直交座標の時と同じですが、成分ごとに見るとある曲線の接線方向の加速度成分と力の成分を考える事になるわけです。

そのように考える時の具体的なベクトルの成分の変換方法を以下述べていきますが、
一般の曲線座標系への変換は話が複雑過ぎるので、物理学等で使われる事があって数学的にも比較的話が穏やかで済む直交曲線座標系への変換に限定して話を進めていきます。
(と言っても、それでも多少複雑になります。)

直交曲線座標とは、聞き慣れない事も多いかと思いますが
具体的には極座標や球面座標、円柱座標のようなものを指します。
これらの座標系では、座標軸に相当する「座標曲線」が任意の点で直交します。
通常のxyzの直交座標系も、直交曲線座標系の特別な場合であるという見方もできます。

他方で、物理の法則を数式で表す時に座標系ごとに形を変換しないといけないというのでは一般論として議論する時に不便であるという考え方があります。
その考え方のもとで、変分原理による計算で導出する「座標系に依存しない運動方程式等の形」というものも存在します。(ラグランジュ型の運動方程式などとも呼ばれます。)
力学の分野である「解析力学」では、そのような考察を計算によって行います。

基本ベクトルと成分の直交曲線座標系への変換方法

ベクトルを含む微分方程式を座標系ごとの形に変換する時に、まず第一に重要となるのがベクトルを構成する基本ベクトルに対する成分の変換方法です。ここではその具体的な方法について説明します。

直交座標上のベクトルは、
(1,0,0)と(0,1,0)と(0,0,1)という
3つの基本ベクトルの線形結合で表す事ができます。
それらをそれぞれ\(\overrightarrow{e_x}\),\(\overrightarrow{e_y}\),\(\overrightarrow{e_z}\) と表す事にすると
任意のベクトルは実数a,b,cを使って\(\overrightarrow{A}=a\overrightarrow{e_x}+b\overrightarrow{e_y}+c\overrightarrow{e_z}\)と書けます。
そして、ここで使った実数a,b,cはそれぞれベクトルの成分であるわけです。
(数学の理論上はこれらの成分は複素数を使っても可です。)

曲線座標でも実は同じような考え方ができて、直交座標からの変換を考える時は基本ベクトルは「向きが座標曲線の勾配ベクトルである単位ベクトル」であり、ここで言う勾配ベクトルはx,y,zで考えたものを指しています。
【■参考:ベクトル解析の概論の記事(勾配ベクトルの微分による定義など)】

より具体的には1つの座標曲線をxyz直交座標でu=F(x,y,z)で表せるとして grad u により表されますが、実際に直交曲線座標で考える時には「r方向」「θ方向」「φ方向」といった形で図形的に把握していればよい事も多いと言えます。そこで、曲線座標における基本ベクトル \(\overrightarrow{e_r}\),\(\overrightarrow{e_\theta}\),\(\overrightarrow{e_{φ}}\) は分かっているものとして次に成分のほうを考えます。

直交座標系曲線座標系
$$\large{\overrightarrow{A}=A_x\overrightarrow{e_x}+A_y\overrightarrow{e_y}+A_z\overrightarrow{e_z}}$$$$\large{\overrightarrow{A}=A_r\overrightarrow{e_r}+A_{\theta}\overrightarrow{e_\theta}+A_{φ}\overrightarrow{e_φ}}$$

ここで、曲線座標系が直交曲線座標であるならば
ベクトルの成分の変換は局所的には方向余弦を使った線形結合の形で表す事ができます。

方向余弦とはその名の通り三角関数の cosθの形で表される量ですが、ここでは角度の値はあまり重要でないのでCの文字と添え字を使って表す事にします。
直交曲線座標系の3つの各基本ベクトルからの、直交座標系のx軸、y軸、z軸への9つの方向余弦を次のようにここでは表記します。

ここでの方向余弦の
記号の表
x軸に対してy軸に対してz軸に対する
r曲線の基本ベクトル
\(\overrightarrow{e_r}\)から
CrxCryCrz
θ曲線の基本ベクトル
\(\overrightarrow{e_\theta}\)から
CθxCθyCθz
φ曲線の基本ベクトル
\(\overrightarrow{e_{φ}}\)から
CφxCφyCφz

これらの方向余弦を使う事で、各点における基本ベクトルと個々のベクトルの成分を直交曲線座標系のものに変換できます。

方向余弦を使ったベクトル成分の変換公式

上記の9つの方向余弦と、xyz直交座標系での成分を使う事で
直交曲線座標系でのベクトルの3つの成分は次のように表されます。 $$\large{A_r=C_{rx}A_x+C_{ry}A_y+C_{rz}A_z}$$ $$\large{A_{\theta} =C_{\theta x}A_x+C_{\theta y}A_y+C_{\theta z}A_z}$$ $$\large{A_φ=C_{φx}A_x+C_{φy}A_y+C_{φz}A_z}$$ この式は、元々は「原点を共有する2つの直交座標におけるベクトルの成分の変換公式」です。
ただし直交曲線座標では基本ベクトルとなる3つのベクトルが互いに直交するので、
各点での方向余弦を関数として表すという前提のもと、同じ変換公式を適用できます。

そこで次は、これらの方向余弦は具体的にどのような数式で表されるのかが問題になります。
それが分れば一般の変換公式を作れるわけです。

変換で使う「方向余弦」を微分により表す公式

方向余弦とは基本的には「余弦」なので「底辺/斜辺」の関係を使います。ただし基本ベクトルは座標曲線の接線ベクトルとして考えていますから方向余弦も微分偏微分で考える必要があります。また、直交曲線座標系の基本ベクトルからxyz直交座標系の軸への方向余弦の表し方は実は2つあって、どちらを使っても同じ結果を得ます。

直交曲線座標系におけるxyz軸への方向余弦の2つの表現方法

座標曲線をu,v,wとして、u=u(x,y,z)に対する
j軸(x,y,z軸のいずれか)の方向余弦は、 u の弧長をl(u)とした時に
次の2通りの表し方があります。
■勾配ベクトル(xyz直交座標系で表したもの)を使う方法
勾配ベクトルは grad u=(∂u/∂x,∂u/∂y,∂u/∂z)で表されるベクトルであり
(ナブラ記号を使うと grad u=∇u)、gradj uは勾配ベクトルのj成分で∂u/∂jの事です。
直交曲線座標系で成立する|gradu|=du/dlの関係式も使っています(証明と説明は後述)。lはu曲線の弧長で、「u増加する向き」にlが増える方向で考えます。(その時du/dl≧0) $$ C_{uj}=\frac{\mathrm{grad}_ju}{|\mathrm{grad}u|}=\frac{dl}{du}\frac{\partial u }{\partial j} $$ ■弧長を斜辺とする方法
(u曲線上では、他の座標曲線の変数は一定でdv/dl=0およびdw/dl=0) $$ C_{uj}=\frac{dj}{dl}=\frac{\partial j}{\partial u}\frac{du}{dl}+\frac{\partial j}{\partial v}\frac{dv}{dl}+\frac{\partial j}{\partial w}\frac{dw}{dl}$$ $$ =\frac{\partial j}{\partial u}\frac{du}{dl}$$ 弧長に対するuによる微分での導関数dl/duは次のように表されます。 $$\frac{dl}{du}=\sqrt{\left(\frac{\partial x}{\partial u}\right)^2+\left(\frac{\partial y}{\partial u}\right)^2+\left(\frac{\partial z}{\partial u}\right)^2}$$ また、dl/duは1変数の導関数なのでdu/dlを次のように表せます。
逆関数の微分公式によります。) $$\frac{du}{dl}=\frac{1}{\Large{\frac{dl}{du}}}=\frac{1}{\large{\sqrt{\left(\frac{\partial x}{\partial u}\right)^2+\left(\frac{\partial y}{\partial u}\right)^2+\left(\frac{\partial z}{\partial u}\right)^2}}}$$

極座標や球面座標への基本ベクトルおよび成分の変換を行う時には
具体的にはx=rcosθなどと表す事から∂x/∂θなどが計算しやすい場合が多くあります。その時には上記の「弧長を斜辺とする方法」を使ったほうが比較的分かりやすくなります。(この記事の後半でもそちらの形の公式を使用。)

dl/dθ や dθ/dlを表す事になる弧長の式については、次に見て行くように球面座標であればr,θ,φの3つ分計算しておく必要があります。平面の極座標であればrとθの2つ分です。

勾配を使った表す方は、直交曲線座標系で成立する |grad θ|=dθ/dlの関係を使ってさらに変形できます。ただし、
曲線の弧長を表す式の元の形

曲線の弧長については元々は定積分で次のように書く事ができて、
上記ではそれを微分した導関数を使用しています。$$l(u)=\int_0^u\sqrt{\left(\frac{\partial x}{\partial u}\right)^2+\left(\frac{\partial y}{\partial u}\right)^2+\left(\frac{\partial z}{\partial u}\right)^2}dt$$ 微分は、ここでの変数で言うとuで行います。 この式は曲線を折れ線に近似して図的に見る事でも理解可能ですが、解析学的に証明もできる式です。

同じ方向余弦の表し方が2つ存在する事と、
|grad u|=du/dlの関係式についての証明と説明

勾配ベクトルについて一般的に成立するのは、スカラー場の値が一定値となっている「等位面」に対して必ず垂直であるというものです。(以下、等位面に含まれる曲線を「等位線」と呼んでおきます。)
極座標のθ曲線である「原点を中心とする同心円」の円周上では
半径が一定であり同心円は「rが一定値である等位線」を構成しています。
球面座標ではrが一定値の球面が等位面として存在します。
スカラー関数F(x,y,z)と弧長がlで表される曲線があるとして、曲線上の座標を成分とするベクトルを\(\overrightarrow{r}=(x(l),y(l),z(l))\)とします。
曲線上でdF/dlを計算すると次式になります。(合成関数に対する偏微分の公式を使用。)$$\frac{dF}{dl}=\frac{\partial F}{\partial x}\frac{dx}{dl}+\frac{\partial F}{\partial y}\frac{dy}{dl}+\frac{\partial F}{\partial z}\frac{dz}{dl}=(\mathrm{grad}F)\cdot\frac{d\overrightarrow{r}}{dl}$$ $$ここでもし\frac{dF}{dl}=0であるなら、(\mathrm{grad}F)\cdot\frac{d\overrightarrow{r}}{dl}=0$$ つまり「Fの値が変化しない曲線」=「Fの等位線」においては
「Fの勾配ベクトルは曲線の接線ベクトルに常に垂直」という事になります。
ところで、直交曲線座標においては1つの座標曲線上では他の変数の値が一定であり、r曲線とφ曲線上でθは一定値です。
また、θ曲線上の任意の点ではr曲線およびφ曲線との交点が存在します。
【より詳しく言えばこれらの曲線は「曲面」を構成しています。】
ところで直交曲線座標系であればr曲線およびφ曲線はθ曲線との交点で直交します。
これは具体的には任意の点での「曲線の接線ベクトル」同士が直交するという意味です。
先ほどの考察から、勾配ベクトル gradθ は
「θが一定値であるφ曲線およびθ曲線上の任意の点」での接線ベクトルに直交します。
よって、gradθ はu曲線上の任意の点において、その点でu曲線と交わるφ曲線およびθ曲線に直交しています。
そして、u曲線自体もφ曲線およびθ曲線に直交しているのでした。 という事はその点においてu曲線の接線ベクトルとgradθは平行なベクトルである事になり、それはすなわちgradθがその点におけるθ曲線の接するベクトルの1つである事を示しています。
先ほどのdF/dlの式においてFの代わりにθを考えると $$\frac{d\theta}{dl}=\frac{\partial \theta}{\partial x}\frac{dx}{dl}+\frac{\partial \theta}{\partial y}\frac{dy}{dl}+\frac{\partial \theta}{\partial z}\frac{dz}{dl}=(\mathrm{grad}\theta)\cdot\left(\frac{dx}{dl},\hspace{2pt}\frac{dy}{dl},\hspace{2pt}\frac{dz}{dl}\right)$$ と表せるわけですが
dx/dl等は、大きさがΔlであるベクトル(Δx,Δy,Δz)における
方向余弦 であるΔx/ΔlのΔl→0の極限値でもあります。
すると、方向余弦についての関係式により、
θ曲線の接線ベクトル(dx/dl,dy/dl.dz/dl)方向の
gradθの成分はdθ/dlである事になります。
よって、何らかの余弦cosω()を使って|gradθ|cosω=dθ/dlと表せる事になりますが、
θ曲線の接線ベクトルと gradθは同じ点でθ曲線に接するのでcosωの値は1か-1です。
上式でF=u(x,y,z)で表す場合【より正確にはこれは曲面を表します】には、弧長であるlは「u増加する向きにlが増えて行く方向」で考えます。
そのためdu/dl ≧0であるので、
cosω=1であり(-1ではなく、という意味)|gradθ|=dθ/dl
するとgradθとθ曲線の接線ベクトルは同じ向きのベクトルであるのでx軸,y軸,z軸への方向余弦は「直角三角形の底辺/斜辺」=「直交座標系でのベクトルの成分/ベクトルの大きさ」として同じ値を持ちます。
(向きは同じでも、ベクトルの大きさは異なります。|gradθ|=dθ/dlですがこれは接線ベクトルの大きさとは一般的に異なります。)
以上の事は直交曲線座標系の任意のu曲線で成立します。

補足として、ベクトルの「方向余弦」自体は余弦 cosθ であるので、軸に対する向きが同じであれば大きさはどのようなベクトルであっても底辺/斜辺の関係で方向余弦を表す事ができます。
つまり数学的には1つの方向余弦の表し方は無限にあるわけですが、ここでの一般的な変換に使えるような微分による方向余弦の表し方の方法としては上記の2通りがあるという事になります。

変換の具体例1(平面の極座標変換の場合)

ベクトルの基本ベクトルと成分に対して具体的に平面での極座標変換をしてみます。平面なので必要な方向余弦は4つで、それを表すために偏微分が4つと弧長の式が2つ必要になります。

まず、xとyに対するrとθの偏微分です。

極座標変換の時∂/∂r∂/∂θ
x=rcosθcosθ-rsinθ
y=rsinθsinθ rcosθ

次に弧長の計算です。∂x/∂rなどを計算してあるので、公式に代入します。
dr/dlなどを使う事になりますが、まずはdl/drの形で記しておきます。

$$\frac{dl}{dr}=\sqrt{(\cos\theta)^2+(\sin\theta)^2}=1$$

$$\frac{dl}{d\theta}=\sqrt{(-r\sin\theta)^2+(-\cos\theta)^2}=\sqrt{r^2}=r$$

このように意外と簡単な式になります。
さらに、θのほうの弧長の式で出てきたrは∂x/∂θの式にあるrと打ち消して方向余弦の値には含まれなくなります。(そのように計算が簡単になる事は一般的に保証されるわけではありませんが、球面座標の場合でも同じ事が起こります。)

方向余弦はCrx=(∂x/∂r)・(dr/dl)=cosθ のように計算します。
θについては例えばCθx=(∂x/∂θ)・(dr/dl)=(-rsinθ)・(1/r)=-sinθです。
先ほど述べたようにrは打ち消して式から無くなるわけです。

4つの方向余弦は具体的には次のような形になります。

  • Crx=(∂x/∂r)・(dr/dl)=cosθ
  • Cry=(∂x/∂r)・(dr/dl)=sinθ
  • Cθx=(∂x/∂r)・(dr/dl)=-sinθ
  • Cθy=(∂x/∂r)・(dr/dl)=cosθ

よってrθ極座標系での基本ベクトルでの\(\overrightarrow{A}\)の成分は
=CrxA+Cry=Acosθ-Asinθ
θ=CθxA+Cθy=Asinθ+Acosθ であり、

\(\overrightarrow{A}\)=(Acosθ-AsinθAθ ,Asinθ+Acosθ)となります。

ところでこれらについて運動方程式等に適用するために微分を考える場合などはどうなるのか?という事については後述します。時間微分に関しては得られた変換の結果の式をそのままtで微分すればよいのですが、元の座標系の値であるAに関する処理が必要となります。

極座標による基本ベクトルと成分の変換公式

xy直交座標系からrθ極座標系に基本ベクトルと成分を変換する式は次のようになります。 $$A_r=\hspace{7pt}A_x\cos\theta+A_y\sin\theta$$ $$A_{\theta}=-A_x\sin\theta+A_y\cos\theta$$ 平面極座標への変換の場合には、直交座標を原点回りに回転させる形で
各点での局所的な変換を行うものとして図から導出する事もできます。

変換の具体例2(球面座標変換の場合)

次に球面座標の場合を見てみます。角度のとりかたはθとφの2箇所がありますが、ここでは平面極座標との関連を見やすくするためにθをxy平面での角度にとり、Φをr曲線(と言っても直線ですが)とz軸のなす角にとって考えます。

9つの偏微分と3つの弧長をまとめると次の通りです。

球面座標変換の時∂/∂r∂/∂θ∂/∂φ
x=rsinφcosθsinφcosθ-rsinφsinθrcosφcosθ
y=rsinφsinθsinφsinθrsinφcosθrcosφsinθ
z=rcosφcosφ-rsinφ
弧長逆数(dr/dlなど)
dl/dr
dl/dθrsinφ1/(rsinφ)
dl/dΦ1/r

弧長の式に関する具体的な計算は次のようになります。 $$\frac{dl}{dr}=\sqrt{\left(\frac{\partial x}{\partial r}\right)^2+\left(\frac{\partial y}{\partial r}\right)^2+\left(\frac{\partial z}{\partial r}\right)^2}=\sqrt{(\sin φ\cos\theta)^2+(\sinφ\sin\theta)^2+(\cos φ)^2}$$ $$=\sqrt{\sin^2φ(\cos^2\theta+\sin^2\theta)+\cos^2φ}=\sqrt{\sin^2φ+\cos^2φ}=1\hspace{60pt}$$ $$\frac{dl}{d\theta}=\sqrt{\left(\frac{\partial x}{\partial \theta}\right)^2+\left(\frac{\partial y}{\partial \theta}\right)^2+\left(\frac{\partial z}{\partial \theta}\right)^2} =\sqrt{(r\sin φ\sin\theta)^2+(r\sinφ\cos\theta)^2+0^2}\hspace{15pt}$$ $$=\sqrt{r^2\sin^2φ(\sin^2\theta+\cos^2\theta)}=\sqrt{r^2\sin^2φ}=r\sin φ\hspace{105pt}$$ $$\frac{dl}{dφ}=\sqrt{\left(\frac{\partial x}{\partial φ}\right)^2+\left(\frac{\partial y}{\partial φ}\right)^2+\left(\frac{\partial z}{\partial φ}\right)^2}\hspace{200pt}$$ $$ =\sqrt{(r\cos φ\cos\theta)^2+(r\cosφ\sin\theta)^2+(r\sin φ)^2}\hspace{115pt}$$ $$=\sqrt{r^2\cos^2φ(\cos^2\theta+\sin^2\theta)+r^2\sin^2 φ}=\sqrt{r^2(\cos^2φ+\sin^2φ)}=\sqrt{r^2}=r\hspace{0pt}$$ dl/dθの計算では、角度φは正弦sinφが0以上の値をとる範囲で考えるとします。それは0≦φ≦πの範囲になりますが、図的に見てもその範囲だけで考えても十分である事になります。それは球面座標においてはθの変化もあるからです。

以下、上記の結果と公式を適用して計算をしていく事で
基本ベクトルを直交座標から球面座標に変換した時のベクトルの変換の公式を得ます。

$$
方向余弦の式\hspace{5pt}C_{uj}=\frac{\partial j}{\partial u}\frac{du}{dl}\hspace{5pt}【u=r,\theta,φ\hspace{3pt}j=x,y,z】$$ $$(具体例)C_{\theta y}=\frac{\partial y}{\partial \theta}\frac{d\theta}{dl}=(r\sinφ\cos\theta)\cdot\frac{1}{r\sinφ}=r\cos\theta$$

方向余弦x軸y軸z軸
r 曲線Crx=sinφcosθCry=sinφsinθCrz=cosφ
θ 曲線Cθx=-sinθCθy=cosθCθz=0
φ 曲線Cφx=cosφcosθCφy=cosφsinθCφz=-sinφ
球面座標による基本ベクトルと成分の変換公式
r 成分 ACrxAx+CryAy+CrzAz= Axsinφcosθ+Aysinφsinθ+Azcosφ
θ 成分 AθCθxAx+CθyAy+CθzAz=-Axsinθ+Aycosθ
φ 成分 AφCφxAx+CφyAy+CφzAz= Axcosφcosθ+Aycosφsinθ-Azsinφ
θはxy平面での角度、φはz軸とr曲線のなす角です。

φ=π/2の時、すなわちr曲線が常にxy平面にある時には
sinφ=1および cosφ=0を代入し、
さらにもとの直交座標でz成分A=0とすれば平面極座標の時の変換公式になります。
(θ成分への変換式はφもAも含んでおらず、実は極座標の時と同じ式です。)

これらの式は
「xy平面での角度をΦとしてz軸とr曲線のなす角をθとした場合」には、
θとφを入れ換える事になります。

「xy平面での角度をΦ、z軸とr曲線のなす角をθとした場合」の変換公式
r 成分 A CrxAx+CryAy+CrzAz = Axsinθcosφ +Aysinθsinφ +Azcosθ
φ 成分 Aφ CφxAx+CφyAy+CφzAz =-Axsinφ+Aycosφ
θ 成分  AθCθxAx+CθyAy+CθzAz = Axcosθcosφ+Aycosθsinφ-Azsinθ

これらの式は単なるθとφの文字の置き換えをしただけであり、
何か新しい変換を行ったという事ではありません。

球面座標の特別な場合として平面の極座標を考える時に、運動方程式におけるような場合では
図のφ=π/2と合わせて「ベクトルのφ成分の時間微分が0である」という条件も考えると一般論としての球面座標から移行を考える事ができます。

運動方程式の球面座標系での成分表示の導出

各成分に対する時間微分を考える時には、直交座標での「ベクトルの時間微分」を1つのベクトルと考えて上記の変換公式を適用します。考え方は、1階の微分でも2階の微分でも同じになります。

  1. 直交座標の成分に対する時間微分dA/dtなどを計算します。
    (2階微分をする時はd/dtを計算します。)
    ただし、計算結果は変換後の変数であるrやθで表す必要があります。
  2. ベクトルの時間微分(d/dt)\(\overrightarrow{A}\) は1つのベクトルであるので、変換の公式を適用して基本ベクトルの変換を行います。
  3. 変換の式に含まれる「直交座標で考えた時の成分」に、直交座標で考えた時間微分dA/dtなどを代入します。

一番簡単な例(と言っても多少複雑ですが)で、
尚且つ重要なベクトルは物体の位置を表す\(\overrightarrow{r}\)=(x,y,z)です。
何の断り書きもなければ直交座標の成分で表されています。

次に、\(\overrightarrow{r}\)=(x,y,z)に対する
1階の時間微分を表す速度ベクトル\({\overrightarrow{v}=\Large\frac{d\overrightarrow{r}}{dt}}\)=(v,v,v)と、
2階の時間微分である加速度ベクトル\(\overrightarrow{a}=\Large{\frac{d^2\overrightarrow{r}}{dt^2}}\)=(a,a,a)について
基本ベクトルを球面座標系に変化した場合の成分はどうなるかを見てみます。
(その特別な場合として平面極座標への変換も分かります。)

=dx/dt,v=dy/dt,v=dz/dtおよび
a=dx/dt,a=dy/dt,a=dz/dt
r,θ,φの時間微分については2階微分のほうの式が少し複雑なので「ドット」で表すのがここでは便利です。ドットが2つ付いていたら2階での時間微分を意味します。
dr/dt=\(\dot{r}\)dθ/dt=\(\dot{\theta}\)dφ/dt=\(\dot{\varphi}\)
r/dt=\(\ddot{r}\)θ/dt=\(\ddot{\theta}\)φ/dt=\(\ddot{\varphi}\)
の表記で式を整理します。

xとyについては積の微分公式を2回使う形で計算をします。
また、θやφをtの関数として考えているので
合成関数の微分公式も同時に使っていく事になります。
例えば sinθやcosφなどの項の時間微分は
(d/dt)sinθ=(dθ/dt)cosθ=\(\dot{\theta}\cos\theta\)
(d/dt)cosφ=-(dφ/dt)sinφ=\(-\dot{\varphi}\sin\varphi\) のようになります。

等速円運動の時のようにx=Rcos(ωt)などとする例ではr=Rは定数であり、θ=ωtの時間微分だけを考えれば良い事になります。(また、平面運動なのでφは式に含まれません。)
しかしここではr,θ,φがいずれもtの関数であるとして一般的な式の形を書きます。

\(\overrightarrow{r}\)=(x,y,z)d/dt
x=rsinφcosθ\(\dot{r}\sin\varphi\cos\theta+\dot{\varphi}r\cos\varphi\cos\theta-\dot{\theta}r\sin\varphi\sin\theta\)
y=rsinφsinθ\(\dot{r}\sin\varphi\sin\theta+\dot{\varphi}r\cos\varphi\sin\theta+\dot{\theta}r\sin\varphi\cos\theta\)
z=rcosφ\(\dot{r}\cos\varphi-\dot{\varphi}r\sin\varphi\)

次に、理論的には1階微分をさらに時間微分する形で2階微分を計算して変換の公式に当てはめれば良い事になりますが、その直接計算は実はかなり面倒です。

具体的な計算式は補足・参考用の資料として記事の最後に載せるとして、計算結果の式は次のようになります。

基本ベクトルを球面座標系に変更した時の加速度ベクトル

2階の時間微分を計算後、
加速度ベクトルに変更の公式を適用するとr,θ,φ成分は次のようになります。 $$a_r=\ddot{r}-\dot{\varphi}^2r-\dot{\theta}^2r\sin^2\varphi$$ $$a_{\theta}=2\dot{r}\dot{\theta}\sin\varphi+2r\dot{\varphi}\dot{\theta}\cos\varphi+r\ddot{\theta}\sin\varphi$$ $$a_{\varphi}=2\dot{r}\dot{\varphi}+r\ddot{\varphi}-r\dot{\theta}^2\sin\varphi\cos\varphi$$ また、θ成分に関しては次のようにも書けます。 $$a_{\theta}=\frac{1}{r\sin\varphi}\frac{d}{dt}\left(r^2\dot{\theta}\sin^2\varphi\right)$$ ここではxy平面の角度をθとしているので、
もしその角度をφとおくなら上式はθとφの文字を入れ替えた形になります。

上式でφ=π/2とおき、時間によるφの変化はないなら平面の極座標での変換を表します。
φ成分がなくなり、r成分とθ成分の式中でsinφ=1となるので式は比較的簡単になります。

平面の極座標の場合

球面座標系への加速度ベクトルの変換の式においてφ=π/2かつdφ/dt=0であれば
平面における極座標での加速度ベクトルの変換の式になります。 $$a_r=\ddot{r}-\dot{\theta}^2r$$ $$a_{\theta}=2\dot{r}\dot{\theta}+r\ddot{\theta}=\frac{1}{r}\frac{d}{dt}\left(r^2\dot{\theta}\right)$$ ここではxy平面の角度をθとしているので、
もしその角度をφとおくなら上式はθとφの文字を入れ替えた形になります。

これらの結果から、球面座標系での運動方程式を作る事ができます。

運動方程式は「力ベクトル=加速度ベクトルと質量の積」という形です。そこで、成分に分けた時に加速度ベクトルの成分として上記の式を使えばよいわけです。それらの成分とはx成分やy成分ではなく、r成分やθ成分であるわけです。

球面座標系における運動方程式の成分表示

球面座標系で運動方程式はr成分、θ成分、φ成分ごとに次のように表されます。 加速度ベクトルに変更の公式を適用するとr,θ,φ成分は次のようになります。 $$F_r=m\left(\ddot{r}-\dot{\varphi}^2r-\dot{\theta}^2r\sin^2\varphi\right)\hspace{5pt}(=ma_r)$$ $$F_{\theta}=m\left(2\dot{r}\dot{\theta}\sin\varphi+2r\dot{\varphi}\dot{\theta}\cos\varphi+r\ddot{\theta}\sin\varphi\right)\hspace{5pt}(=ma_\theta)$$ $$F_{\varphi}=m\left(a_{\varphi}=2\dot{r}\dot{\varphi}+r\ddot{\varphi}-r\dot{\theta}^2\sin\varphi\cos\varphi\right)\hspace{5pt}(=ma_\theta)$$ 平面の極座標においては次のようになります。 $$F_r=m\left(\ddot{r}-\dot{\theta}^2r\right)$$ $$F_{\theta}=m\left(2\dot{r}\dot{\theta}+r\ddot{\theta}\right)=\frac{m}{r}\frac{d}{dt}\left(r^2\dot{\theta}\right)$$ このように運動方程式を書く時には、
力ベクトルの成分も加速度ベクトル同様にr成分、θ成分、φ成分として表されます。
「力」は任意の方向にベクトルと同じ規則で分解できるので(実験で示されます)、
自由な方向での成分を考える事ができます。

これを見ると、一応そのように表せるといっても結構複雑です。直交曲線座標の中では比較的構造が単純で分かりやすい球面座標系であっても、加速度ベクトルや運動方程式をその座標系で考えるとなると直交座標系からの基本ベクトルと成分の変換はそれほど容易でない事が分かります。

平面上の極座標で見れば比較的形は簡単にはなりますが、直交座標での形と比べるとやはり複雑さは増しています。運動方程式の極座標系での成分表示は、回転を伴う運動の一部の解析では有効に機能します(例えば万有引力だけが働く物体の軌道を調べる時など)。

参考:球面座標に変換後の加速度ベクトルの成分計算

参考資料として、非常に地味ですが
速度ベクトルの加速度ベクトルの各成分を直接計算した場合の式を記します。

ここでの計算では、積の微分の規則から式全体は \(\ddot{r}\)の項や\(\dot{r}\dot{\theta}\)の項に分けて、変換の公式を適用までした値を1つずつ計算して最後に合計値を出します。それら自体は単なる微分と三角関数の計算問題なので、「確かに結果の式が直接計算でも得られる」という事を見るための参考用資料です。

(再掲)球面座標における基本ベクトルと成分の変換
r 成分 ACrxAx+CryAy+CrzAz= Axsinφcosθ+Aysinφsinθ+Azcosφ
θ 成分 AθCθxAx+CθyAy+CθzAz=-Axsinθ+Aycosθ
φ 成分 AφCφxAx+CφyAy+CφzAz= Axcosφcosθ+Aycosφsinθ-Azsinφ
θはxy平面での角度、φはz軸とr曲線のなす角
\(\overrightarrow{r}\)=(x,y,z)d/dt(1階微分)
x=rsinφcosθ\(\dot{r}\sin\varphi\cos\theta+\dot{\varphi}r\cos\varphi\cos\theta-\dot{\theta}r\sin\varphi\sin\theta\)
y=rsinφsinθ\(\dot{r}\sin\varphi\sin\theta+\dot{\varphi}r\cos\varphi\sin\theta+\dot{\theta}r\sin\varphi\cos\theta\)
z=rcosφ\(\dot{r}\cos\varphi-\dot{\varphi}r\sin\varphi\)

具体的なr,θ,φ成分の計算

tによる2階導関数(2階微分)はr,θ,φ成分のいずれにも共通して使えます。
異なるのは変換公式における方向余弦になります。
この表は、例えば式中の\(\ddot{r}\)の項の係数は
2階微分を行った時点の変換前でxにおいては\(\ddot{r}\)sinφcosθであり、
r成分への変換用の方向余弦sinφcosθを乗じるとsinφcosθとなっている事を記しています。
yとzについても同様に計算し、例として\(\ddot{r}\)の項については合計すると係数の値は1になります。

sinθ+cosθ=1の関係などで三角関数の大部分は式から消えて、
プラスマイナスで打ち消して無くなる項も多くあるために
最終的な結果で残る項は比較的少なくなります。

\(\ddot{r}\)変換前r成分θ成分φ成分
x由来sinφcosθsinφcosθ-sinφsinθcosθsinφcosφcosθ
y由来sinφsinθsinφsinθsinφsinθcosθsinφcosφsinθ
z由来cosφcosφ-sinφcosφ
合計・・・
\(\dot{r}\dot{\theta}\)係数r成分θ成分φ成分
x由来-2sinφsinθ-2sinφsinθcosθ-2sinφsinθ-2sinφcosφ
sinθcosθ
y由来2sinφcosθ2sinφsinθcosθ2sinφcosθ2sinφcosφ
sinθcosθ
z由来なしなしなしなし
合計・・・2sinφ
\(\dot{r}\dot{\varphi}\)変換前r成分θ成分φ成分
x由来2cosφcosθ2cosφsinφcosθ-2cosφcosθsinθ2cosφcosθ
y由来2cosφsinθ2cosφsinφsinθ2cosφcosθsinθ2cosφsinθ
z由来-2sinφ-2cosφsinφ2sinφ
合計・・・
\(\ddot{\varphi}\)変換前r成分θ成分φ成分
x由来rcosφcosθrsinφcosφcosθ-rcosφcosθsinθrcosφcosθ
y由来rcosφsinθrsinφcosφsinθrcosφcosθsinθrcosφsinθ
z由来-rsinφ-rsinφcosφrsinφ
合計・・・
\(\dot{\varphi}^2\)変換前r成分θ成分φ成分
x由来-rsinφcosθ-rsinφcosθrsinφcosθsinθ-rcosφsinφcosθ
y由来-rsinφsinθ-sinφsinθ-rsinφcosθsinθ-rcosφsinφsinθ
z由来rcosφ-rcosφrcosφsinφ
合計・・・-r
\(\ddot{\theta}\)変換前r成分θ成分φ成分
x由来-rsinφsinθ-rsinφcosθsinφrsinφsinθ-rcosφsinφ
cosθsinθ
y由来rsinφcosθrsinφcosθsinφrsinφcosθrcosφsinφ
cosθsinθ
z由来なしなしなしなし
合計・・・rsinφ
\(\dot{\theta}^2\)変換前r成分θ成分φ成分
x由来-rsinφcosθ-rsinφcosθrsinφcosθsinθ-rcosφsinφ
cosθ
y由来-rsinφsinθ-rsinφsinθ-rsinφcosθsinθ-rcosφsinφ
sinθ
z由来なしなしなしなし
合計・・・-rsinφ-rcosφsinφ
\(\dot{\theta}\dot{\varphi}\)変換前r成分θ成分φ成分
x由来-2rcosφsinθ-2cosφsinφcosθsinθ2rcosφsinθ-2rcosφ
cosθsinθ
y由来2rcosφcosθ2cosφsinφosθsinθ2rcosφcosθ2rcosφ
cosθsinθ
z由来なしなしなしなし
合計・・・2rcosφ

成分ごとに合計すると、加速度ベクトルの変換後の各成分は
\(a_r=\dot{r}-\dot{\varphi}^2r-\ddot{\theta}^2r\sin^2\varphi\)
\(a_{\theta}=2\dot{r}\dot{\theta}\sin\varphi+2\dot{\theta}\dot{\varphi}r\cos\varphi+\ddot{\theta}r\sin\varphi\)
\(a_{\varphi}=2\dot{r}\dot{\varphi}+\ddot{\varphi}r-\dot{\theta}^2r\cos\varphi\)
になります。

他の計算の仕方としては、変換の公式を先に使って例えばv=vxsinφcosθ+vysinφsinθ+vzcosφの形で表して、その式の時間微分をするという方法もあります。その場合でも計算式は多少長くなります。

静電場の渦無しの法則

静止した電荷あるいは電荷の分布が作る静電場(時間による値の変動がない電場)についてはクーロンの法則と、その一般的な形であるガウスの法則が成立します。そしてもう一つ、「渦無しの法則」というものも成立します。

渦無しの法則とは

ここで言う電場の「渦」というのは数式としては流体力学等で想定されるものと同じ形の式です。すなわち、数式的にはベクトル場の「回転」(「カール」「ローテーション」とも)によって表す量です。

静電場を構成するものが静電荷あるいはその分布であるときには、電場が定義される任意の位置において電場の回転\(\mathrm{rot}\overrightarrow{E}\)はゼロベクトルになる事が数式的に証明できます。それが静電場の渦無しの法則と呼ばれるものです。

また、それと同時に循環と呼ばれる量も0になる事が示されて、それを静電場の渦無しの法則と呼ぶ事もあります。この循環という量は、数式的にはベクトル場の閉曲線に対する接線線積分です。2つの事実関係はストークスの定理によって結び付けられるので、どちらの事を渦無しの法則と呼んでも同じ事になります。

静電場の渦無しの法則

静止した電荷(またはその分布)がある時、
それによる電場が定義できる任意の位置で次式が成立します。 $$\mathrm{rot}\overrightarrow{E}=0$$ ナブラ記号を使って書けば次のようになります。 $$\nabla×\overrightarrow{E}=0$$

また、同じく静止した電荷が作る電場の循環(circulation)について
電場が定義される範囲で任意の閉曲線Cに対して次式が成立します。$$\oint_C\overrightarrow{E}\cdot d\overrightarrow{l}=0$$

実は電場の循環は、閉曲線Cに沿って単位電荷が1周分する時の「電場が行った仕事」です。渦無しの法則は、静電荷が作る静電場においてはそれが任意の閉曲線で0になる事を言っています。その事は電磁誘導によって回路等に起電力と誘導電場が生じる時には渦無しの法則が成立しない事との関係が大いにあります。

また、後述する事に関係しますが定電流によって作られる静磁場の場合には回転も循環も0にはなりません。つまり点電荷による静電場では渦無しの法則が成立し、逆に定電流による静磁場では渦無しの法則は成立せず「渦」がある状態になります。

渦無しの法則における回転と循環の関係

渦無しの法則における回転と循環の関係について先に示しておきましょう。
ストークスの定理により次式が成立します。

$$\oint_C\overrightarrow{E}\cdot d\overrightarrow{l}=\int_S\mathrm{rot}\overrightarrow{E}\cdot d\overrightarrow{s}$$

ここで、まず回転に関して渦無しの法則が成立するならストークスの定理の右辺(法線面積分の項)は0ですから、左辺の循環もそのまま0になるわけです。

$$\mathrm{rot}\overrightarrow{E}=0であるとき\oint_C\overrightarrow{E}\cdot d\overrightarrow{l}=\int_S\mathrm{rot}\overrightarrow{E}\cdot d\overrightarrow{s}=0$$

次に循環に関して渦無しの法則が成立する時にはストークスの定理の右辺が0という事になりますが、これは法線面積分が0という事であって積分対象の\(\mathrm{rot}\overrightarrow{E}\)が0という事を直ちには示しません。しかし、渦無しの法則が意味するところは閉曲線Cが特定のものではなく「任意」であるという事なので、積分対象の関数が高等的に0である事を意味します。

$$\oint_C\overrightarrow{E}\cdot d\overrightarrow{l}=0の時には\oint_C\overrightarrow{E}\cdot d\overrightarrow{l}=\int_S\mathrm{rot}\overrightarrow{E}\cdot d\overrightarrow{s}=0$$

$$この式は「任意の」閉曲線Cで成立するので\mathrm{rot}\overrightarrow{E}=0$$

(ストークスの定理における曲面Sは、閉曲線Cを外縁に持つ任意の開曲線。)

この論法はガウスの発散定理を使って静磁場の発散について積分形から微分形を導出する時のやり方に似ています。

これにより、点電荷が作る静電場の回転が0である事と、循環が0である事のどちらを指して渦無しの法則と呼んでも数式的には同じであると言えるわけです。

静電場の回転の直接計算による導出

静止した点電荷が作る電場について渦無しの法則が成立すれば電荷が複数あってもベクトル場は重ね合わせ(ベクトルの和)で計算されるので同じく渦無しの法則が成立する事になります。

考え方や導出・証明方法はたくさんあるのですが、実は電場の回転を定義に従って普通に計算しても意外に簡単に結果が出ます。そこで、まず偏微分の直接計算によって回転が0になる事を示し、次にそれが「偶然なのか必然だったのか」について考察してみましょう。

点電荷の電気量をQ【C】、比例定数はまとめてkとして、座標を使った電場ベクトルを成分で書きます。見やすくするようにkで割ったものを考えると次のようになります。

$$\frac{1}{k}\overrightarrow{E}=\left(\frac{x}{(x^2+y^2+z^2)^{\frac{3}{2}}},\frac{y}{(x^2+y^2+z^2)^{\frac{3}{2}}},\frac{z}{(x^2+y^2+z^2)^{\frac{3}{2}}}\right)$$

他方、電場の回転\(\mathrm{rot}\overrightarrow{E}\)は次のようなベクトルです。

$$\mathrm{rot}\overrightarrow{E}=\left( \frac{\partial E_3}{\partial y}-\frac{\partial E_2}{\partial z} ,\hspace{5pt} \frac{\partial E_1}{\partial z}-\frac{\partial E_3}{\partial x} ,\hspace{5pt} \frac{\partial E_2}{\partial x}-\frac{\partial E_1}{\partial y} \right)$$

一見計算するにならないかもしれませんが、商の微分公式と合成関数の微分公式を使って回転の第3成分を計算してみると次のようになります。上記と同じく比例定数kで割った状態で計算します。

$$\frac{1}{k}\mathrm{rot}\overrightarrow{E}の第3成分\frac{\partial E_2}{\partial x}-\frac{\partial E_1}{\partial y}$$

$$=\frac{-2x\cdot\frac{3}{2}\cdot(x^2+y^2+z^2)^{\frac{1}{2} } y}{(x^2+y^2+z^2)^3}+\frac{2y\cdot\frac{3}{2}\cdot(x^2+y^2+z^2)^{\frac{1}{2} } x}{(x^2+y^2+z^2)^3}$$

$$=\frac{-3xy}{(x^2+y^2+z^2)^{\frac{5}{2}}}+\frac{3xy}{(x^2+y^2+z^2)^{\frac{5}{2}}}=0$$

このように、意外にそこまで複雑というわけでもなく第3成分は0になると言う結果を得ます。
全く同じように計算すると第1成分と第2成分も0になるので、渦無しの法則の式 \(\mathrm{rot}\overrightarrow{E}=0\) が導出されます。

勾配と回転の関係からの導出

さて「計算したら上手い具合に0になった」というのは偶然でしょうか?

実の所、「ある程度は必然の結果であった」と言えるのです。これは、スカラー場の勾配ベクトルに対する回転は必ず0(ゼロベクトル)になるという公式が存在するためです。

公式:条件を満たした「スカラー場の勾配」の回転は0になる

勾配が定義できるスカラー場について、
3変数のそれぞれで2階までの連続な偏導関数が存在する時には次式が成立します。$$\mathrm{rot}(\mathrm{grad}\phi)=0$$

この公式の証明は直接計算でできます。これも、意外と複雑ではないのです。

$$\mathrm{grad}\phi=\left(\frac{\partial \phi}{\partial x},\frac{\partial \phi}{\partial y},\frac{\partial \phi}{\partial z}\right)なので$$

$$\mathrm{rot}(\mathrm{grad}\phi)= \left( \frac{\partial^2 \phi}{\partial y\partial z}- \frac{\partial^2 \phi}{\partial z\partial y} , \frac{\partial^2 \phi}{\partial z\partial x}- \frac{\partial^2 \phi}{\partial x\partial z} , \frac{\partial^2 \phi}{\partial x\partial y}- \frac{\partial^2 \phi}{\partial y\partial x} \right)$$

$$= \left( \frac{\partial^2 \phi}{\partial y\partial z}- \frac{\partial^2 \phi}{\partial y\partial z} , \frac{\partial^2 \phi}{\partial z\partial x}- \frac{\partial^2 \phi}{\partial z\partial x} , \frac{\partial^2 \phi}{\partial x\partial y}- \frac{\partial^2 \phi}{\partial x\partial y} \right)=(0,0,0)$$

つまり、回転ベクトルの成分の構成が規則的である事と、偏微分を複数回行う時には順序によらず同じ結果となるという条件のもとで公式が成立するわけです。

偏微分の順序については「なめらかな関数」に対しては普通はあまり気にしないでよいのですが、特定の点や領域で微分可能性が怪しくなる場合には注意が必要な事があります。
複数の変数での偏微分において順序によらず同じ偏導関数が得られる保証があるのは
「偏微分を行う階数Nに対していずれの変数でもN階以下の連続な偏導関数が全て存在する事」になります。
このNは、例えばxとyで1回ずつ偏微分する場合には「2回」と数えます。

さて、公式 rot(gradφ)=0の意味を考えてみると、
あるベクトル場が「何らかのスカラー場の勾配ベクトルになっていて偏微分に関する条件も満たす」のであれば回転ベクトルは0になるという事になります。さらに言い換えると、そのようなスカラー場が存在するならば\(\mathrm{rot}\overrightarrow{F}=0\) が成立すると言えるのです。

静電場の渦無しの法則に戻ると、点電荷が作る電場に対してはそのようなスカラー場が存在する事ができて、それがいわゆる「電位」です。静電場においては電位は「単位電気量(1[C])の電荷の位置エネルギー」であるという意味付けができます。(2地点の電位の差である「電位差」がいわゆる「電圧」です。)

静電場から電位を計算する時には接線線積分を考えますが、無限遠を基準にとれば点電荷からの距離を変数とする変数の定積分として計算ができます。その結果として得られるスカラー場の勾配ベクトルを考えると、それはもとの静電場に戻るのです。ですので、実は成分の直接計算をしなくても、点電荷が作る静電場には電位が存在する事から渦無しの法則も成立すると言う事もできるのです。

$$\mathrm{grad}V=\overrightarrow{E}となる電位Vが存在し、これは所定の条件を満たすので\mathrm{rot}\overrightarrow{E}=0$$

また、静止した点電荷に対する電位を具体的に計算すると点電荷からの距離r【m】に反比例する形になりますので、その関数は点電荷自身の位置を除けば任意の点で何回でも偏微分可能ですから先ほど少し触れた「偏微分の順序」についても気にしなくてよい事になります。

電磁場で「渦」がある場合

逆に渦無しの法則が成立しない状況は電磁場においてどのようなものがあるかというと、ここでは簡単にだけまとめておくと代表的なものとして次のようなものがあります。

  • 磁場の時間変動がある場合のおける電場(電磁誘導の法則により起電力が発生します。)
  • 定常電流および変位電流が作る静磁場(アンペールの法則によります。特に電流が生じている導線を囲む閉曲線に対して。)

まず磁場の時間変動がある場合には電場にの回転はゼロではなくなります。これが電磁誘導の法則の内容であり、起電力が生じる事を意味しています。

次に、定電流が作る静磁場についても電流が生じている導線まわりの閉曲線においてはアンペールの法則により接線線積分の値はゼロにならず、渦ができていると考えられます。(ただし、この時の回転ベクトルと接線線積分に関する数学的な扱いには少し注意する必要もあります。)この場合には、アンペールの法則の意味としては電流もそうですが電場の時間変化(変位電流)にも起因して磁場の回転が発生する事を意味します。その事を指して起磁力と言う言葉が使われる事もあります。(起電力に対応する語)。

つまりごく簡単に言うと電場の時間変動(あるいは電流)によって磁場が作られて、磁場の時間変動によって電場(あるいは電流)が作られる関係があります。そしてその時に、循環の形の接線線積分で表される「渦」が生じるという体系になっていると言えます。

また電流の種類で「渦電流」というものも存在しますが、それはまた別の扱いが必要になってきます。

ナブラ記号の使い方

ベクトル解析などで使う grad, div, rot (または curl) の代わりに∇(「ナブラ」nabla, del)という記号を演算子として使って表記する方法があります。

この記事ではそれらの書き換えの方法と、ナブラ記号を使って作られる別の2つの演算子について詳しく説明します。

■サイト内参考記事(主に応用・ナブラを使う例など)
物理学全般で使用され、例として電磁気学で使う事ができます。

ナブラを使う利点は何か?

grad, div, rot の代わりにナブラ記号を使う利点は、特に式が複雑になる時などです。記述する文字数が少なくなるので比較的見やすくるといった事などの利点があります。

また数式の記述に統一性が出るために意味で好んで使われる場合もあるのです。後述していくように、grad, div, rot などの計算はベクトルの演算に類似性が見られるのでそれをナブラ記号によって統一的に整理する事も可能になるからです。

ただし grad, div, rot の置き換えとしての使用ではあくまで記号の「書き換え」なので数学的な意味が変わってしまうという事ではありません。

ナブラ記号を使わない grad, div, rot の表記法ではイメージ的な意味がつかみやすいという利点があります。言い換えると、一度イメージがつかめたのであれば数式的な形の簡便さや統一性を重視してナブラ記号での表記を行うという考え方もあると言えるでしょう。

尚「ナブラ」という言葉自体は元々楽器の「竪琴」の意味らしく、逆三角形の記号の形∇として見立てたというのが通説のようです。

ナブラを使うと、記述量が減るという利点の他に計算方法の統一性を見れるという利点もあります。他方で図形的なイメージはあらかじめ知っておかないと捉えにくいものとなります。

勾配(grad)の書き換え

まずスカラー場に対して「勾配」を表す grad の書き換えです。

スカラー関数f(x,y,z)に対して gradfの代わりに∇fと書いても同じ意味を表す約束になっています。

gradf=∇fはベクトルなので成分を持ちますが、個々の成分を表す時には下に添え字を付けて表記する時があります。すなわち、∇fのx成分は∇f,y成分は∇f,z成分は∇fのように書いたりします。

$$\large{\mathrm{grad}f(x,y,z) =\nabla f=(\nabla_x f,\nabla_y f,\nabla_z f)}$$

例としては、ベクトル場がポテンシャル(スカラーポテンシャル、位置エネルギー)の勾配で表される式を書く時には記号として grad の代わりに∇を使えるわけです。

$$\overrightarrow{F}=-\mathrm{grad}\phiの代わりに\overrightarrow{F}=-\nabla\phiとも書けます。$$

この意味で使うナブラ記号はハミルトン演算子と呼ばれる時もあり、
形式的には「ベクトルとスカラーの積」として捉えられます。
※これは量子力学におけるハミルトン演算子もしくはハミルトニアンとは別物です。

あくまで形としての話ですが∇を数式上ベクトルとみなし(ベクトルそのものではない)、スカラー場との「積」のように考えるわけです。この考え方は、次に見るように発散や回転の書き換え時には「内積」や「外積」との数式上な類似性に着目する事との統一性を持っています。

$$形式的に、\nabla=\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)ともみなせます。$$

あるいは
xyz直交座標における基本ベクトル(軸方向の単位ベクトル)である
\(\overrightarrow{e_x}\)=(1,0,0)
\(\overrightarrow{e_y}\)=(0,1,0)
\(\overrightarrow{e_z}\)=(0,0,1)
を使う事によって、 $$\nabla=\overrightarrow{e_x}\frac{\partial}{\partial x}+ \overrightarrow{e_y}\frac{\partial}{\partial y}+ \overrightarrow{e_z}\frac{\partial}{\partial z}$$と書く事もできます。
この場合においてもナブラはあくまで「演算子」であるという考え方になります。

発散(div)の書き換え

次に、ハミルトン演算子としてのナブラ記号を使ってベクトル場の「発散」div を書き換える方法を見ます。(※極限における「無限大への発散」は別物です。)

この場合には、発散 div がハミルトン演算子とベクトル場との「内積」のような形をとる事に着目します。そこで形式上の「∇とベクトル場の内積」を考えてベクトル場の発散を表すものと約束します。

$$\mathrm{div}\overrightarrow{F}の代わりに\nabla\cdot\overrightarrow{F}とも書けます。$$

$$\mathrm{div}\overrightarrow{F}=\nabla\cdot\overrightarrow{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}$$

形式上という事は強調されるべきですが
勾配 grad は「スカラー場からベクトル場を作る」操作であり、
発散は逆に「ベクトル場からスカラー量を作る」操作である事を考えると
「ベクトルとスカラーの積はベクトル」であり
「ベクトルとベクトルの内積はスカラー」という、ベクトルの基本演算との類似性や統一性を見れるわけです。

例としてはガウスの発散定理は次のように書いてもよいわけです。

$$\int_V\nabla\cdot\overrightarrow{F}dv=\int_S \overrightarrow{F}\cdot d\overrightarrow{s}$$

ここで、左辺の積分の中身は\(\mathrm{div}\overrightarrow{F}\)であり、それに対して右辺の内積記号は図形的にも内積を考えますので数式的な形は同じでも意味が異なるわけです。この事に対して意味的に紛らわしいと見るか、数式上の統一性があって好ましいと見るかは人それぞれの考え方によるでしょう。

規則性に類似点は見られるとはいえ勾配と発散は異なる数学的な操作を表しますから、単独のナブラ「∇」とドットがついた「∇・」はそれぞれ意味としては別々の操作を表す事になります。

また、後述しますが少し紛らわしい表記として「∇・」ではなくナブラ記号とベクトル場の「内積の順序を変えたもの」は別の意味を表す演算子とみなす場合があります。通常のベクトルの場合は内積は順序を変えても同じスカラーになりますが、ナブラ記号を演算子として考えた場合には「∇・」の順番で書いて「発散 div」の意味になります。

$$\nabla\cdot\overrightarrow{F}=\mathrm{div}\overrightarrow{F}ですが、\overrightarrow{F}\cdot\nablaは別の演算子です。$$

回転(rot, curl)の書き換え

ベクトル場の回転をハミルトン演算子としてのナブラ記号で書き換える場合には3次元ベクトルの外積(クロス積、ベクトル積)の記号を使います。
つまり\(\nabla\times\overrightarrow{F}\)のように書くわけです。

$$\mathrm{rot}\overrightarrow{F}=\nabla\times\overrightarrow{F}$$

3次元ベクトルの外積はまた1つの3次元ベクトルですが、ベクトル場の回転もまた別のベクトル場ですから記述上の統一性があります。

通常のベクトルの場合、外積あるいはクロス積の成分での計算は次のようになります。

$$\overrightarrow{E}\times\overrightarrow{F}=(E_2F_3-E_3F_2,\hspace{5pt}E_3F_2-E_2F_3,\hspace{5pt}E_1F_2-E_2F_1)$$

この外積における最初のベクトル\(\left(\overrightarrow{E}のほう\right)\)をハミルトン演算子としてのナブラ記号で置き換えると、数式の形としてはベクトル場の回転になるわけです。

$$\nabla=\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)のもとで$$

$$\nabla\times\overrightarrow{F}=\left( \frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z} ,\hspace{5pt} \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x} ,\hspace{5pt} \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y} \right)$$

見た目としては、∇を先に書いて偏微分する変数が「下側」に書かれますので順番を間違えないように注意。「偏微分の演算子」をベクトル場の各成分に付けると考えたほうが順番的には通常のクロス積との見た目の整合性が取れます。

$$\frac{\partial }{\partial y}F_3=\frac{\partial F_3}{\partial y}に注意して$$

$$\nabla\times\overrightarrow{F}の第1成分は\frac{\partial }{\partial y}F_3-\frac{\partial }{\partial z}F_2と考えます。$$

使用例としてストークスの定理をナブラ記号で書くと次のようになります。

$$\oint_C\overrightarrow{F}\cdot d\overrightarrow{l}=\int_S\left(\nabla\times\overrightarrow{F}\right)\cdot d\overrightarrow{s}$$

この式の右辺のように、ベクトル場の回転に「内積」が続くような場合には括弧をつけて\(\left(\nabla\times\overrightarrow{F}\right)\) のように書く事が多いです。そのまとまりで1つのベクトルである事を強調するわけです。括弧を付けないで内積を書く事もありますが、意味としては「ベクトル場の回転」と別のベクトルとの内積です。式の形から紛らわしい場合には括弧を付けておいたほうが無難かとは思われます。

「外積」という用語やその計算規則についてはベクトル場の回転を含む事項(例えばストークスの定理)を純粋に数学の解析学的に取り扱う場合にも重要になってきます。

2階の偏微分を扱う「ラプラス演算子」

以上の3例の他に「3変数の各々により2階の偏微分を行い加え合わせる」という操作が行われる時があります。つまり、ベクトル場の発散を1階ではなく2階の偏微分で行うような場合です。これは、スカラー場に対して行う場合とベクトル場に対して行う2つの場合があるので区別して説明します。

いずれの場合もナブラ記号を使って書く方法があります。
あるいは∇・∇と書いて1つの演算子としてみなし、「ナブラ2乗」と読むかラプラス演算子と呼びます。∇φのようにスカラー場やベクトル場に作用させて使います。

スカラー場に対する場合の例は次のようなものです。

$$\nabla^2\phi=\frac{\partial^2\phi}{\partial x^2}+\frac{\partial^2\phi}{\partial y^2}+\frac{\partial^2\phi}{\partial z^2}のような量を考えます。$$

ラプラス演算子の表記上の注意点

ラプラス演算子について∇という記号の代わりに、単独の三角形の記号「△」を使う事もあるので注意する必要があります。つまり、ナブラ記号を使わず、grad, div のような名称を元にした記号とも異なった、全く別の記号が改めて使われる事もあるという事です。

$$例:\nabla^2\phi=△\phi=\frac{\partial^2\phi}{\partial x^2}+\frac{\partial^2\phi}{\partial y^2}+\frac{\partial^2\phi}{\partial z^2}$$

さらにはラプラス演算子としての△記号は、書籍によっては微小量を表す「デルタ」Δ(これはギリシャ文字の1つ)との表記上の区別もつけられない場合もあります。そのため、書籍によっては記号の意味をきちんと押さえていないと数式の読み取りが非常に難しくなる場合があります。

デルタとラプラス演算子の記号が区別されない表記方法の場合、基本的にデルタはΔx(デルタエックス)などのように「変数」に付ける事が多く、ラプラス演算子は3変数の関数に付ける事からおおよその区別は可能です。つまり微小量の議論の文脈が無い箇所で唐突に3変数関数に対して△φなどと式に書かれたらそれは普通はラプラス演算子による計算を表します。

スカラー場に対するラプラス演算子

スカラー場の各成分に対して「2階の偏微分を行って加え合わせる」量は、スカラー場から始めて発散と勾配を組み合わせて作る事ができます。すなわち、あるスカラー場φに対してgradφを考え、その発散をとればよい事になります。

$$\mathrm{div}(\mathrm{grad}\phi)=\mathrm{div}\left(\frac{\partial\phi}{\partial x},\frac{\partial\phi}{\partial y},\frac{\partial\phi}{\partial z}\right)=\frac{\partial^2\phi}{\partial x^2}+\frac{\partial^2\phi}{\partial y^2}+\frac{\partial^2\phi}{\partial z^2}$$

この事自体をナブラ記号で書く事もできるのです。

$$\nabla\cdot(\nabla\phi)=\nabla\cdot\left(\frac{\partial\phi}{\partial x},\frac{\partial\phi}{\partial y},\frac{\partial\phi}{\partial z}\right)=\frac{\partial^2\phi}{\partial x^2}+\frac{\partial^2\phi}{\partial y^2}+\frac{\partial^2\phi}{\partial z^2}$$

そこで、ナブラ記号による演算の組み合わせである∇・∇を考えます。注意点として、これは∇・(∇φ)のナブラをくっつけてしまうというよりは、ハミルトン演算子同士の形式上の「内積」を考えて、それをスカラーのように考えてスカラー場φに乗じるという考え方に近いものです。(後述するスカラー演算子と同じ考え方です。)

また、そのように考えた∇・∇を∇と書く事もあります。いずれにしてもこれを1つの演算子とみなしてラプラス演算子と呼ぶわけです。

$$\nabla=\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)同士の形式上の「内積」を考えます。$$

$$\nabla\cdot\nabla=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}$$

$$あるいは\nabla\cdot\nablaを\nabla^2と表記して\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}$$

∇・∇と∇を同じ意味で使う事に関しては、普通のベクトル同士の内積をとる時にはそれは「自乗」とはみなしませんので注意は必要です。(ベクトル同士の内積は「ベクトルの絶対値」の2乗にはなります。また、細かい点ではありますが曲線座標をもし考える場合には∇・∇と∇は同一視しません。)

このスカラー的な演算子(内積はスカラーである事にも注意)をスカラー場φに乗じるように作用させる事で∇・(∇φ)と同じ結果を得るというわけです。

$$\nabla^2\phi=\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)\phi=\frac{\partial^2\phi}{\partial x^2}+\frac{\partial^2\phi}{\partial y^2}+\frac{\partial^2\phi}{\partial z^2}$$

スカラー場に対してラプラス演算子を作用させる例としては微分方程式としての波動方程式があります。(解が周期関数のような「波動」になる。)また、演算子の部分だけをとって波動演算子と呼ぶ事もあり、そこにラプラス演算子が使われるというパターンもあります。

$$例:\left(\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\phi=-\frac{\rho}{\epsilon_0}$$

$$\left(\Leftrightarrow \nabla^2\phi-\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} =-\frac{\rho}{\epsilon_0}\right)$$

この例は、電場に関するガウスの法則で電場の代わりにスカラーポテンシャル(これはスカラー場)を使って変形したものです。c は光の速さでtは時間、右辺の記号は電荷密度と真空の誘電率。
ポテンシャルを使わず電場のままでも同様の式を導出できますが項などが増えて少しばかり複雑さが増します。同じ型の式を磁場についても導出できて、合わせて電磁波の式を導出できます。

ベクトル場に対するラプラス演算子

ラプラス演算子∇は、スカラー場だけでなくベクトル場にも作用させる事ができます。勾配はスカラー場に対して、発散と回転はベクトル場に対して必ず作用させるものである事と比較すると少し特殊であるとは言えます。しかし、通常の微分や偏微分の操作を演算子として考えると同じくスカラー場にもベクトル場にも作用させる事ができますからそれほど不思議な考え方ではないとも言えます。

そして、考え方自体はラプラス演算子をスカラー場に作用させる時と同じなのです。つまり、∇あるいは∇・∇はスカラー的な演算子と言えるからベクトル場にも作用できると考えるのです。そのため、ラプラス演算子をベクトル場に作用させたものもまたベクトル場になります。演算子がスカラー量の乗法のように「ベクトルの各成分に対して作用する」と考えるためです。

計算上は演算子の作用により一度3つのベクトルができて、合計して結果的に1つのベクトルになると考える事も可能です。いずれにしても最終的にはベクトル場の成分に対して作用する計算です。具体的には次のようになります。

$$\nabla^2\overrightarrow{F}=\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)\overrightarrow{F}=\frac{\partial^2}{\partial x^2}\overrightarrow{F}+\frac{\partial^2}{\partial y^2}\overrightarrow{F}+\frac{\partial^2}{\partial z^2}\overrightarrow{F}$$

$$=\small{\left( \frac{\partial^2F_1}{\partial x^2}+\frac{\partial^2F_1}{\partial y^2}+\frac{\partial^2F_1}{\partial z^2},\hspace{5pt} \frac{\partial^2F_2}{\partial x^2}+\frac{\partial^2F_2}{\partial y^2}+\frac{\partial^2F_2}{\partial z^2},\hspace{5pt} \frac{\partial^2F_3}{\partial x^2}+\frac{\partial^2F_3}{\partial y^2}+\frac{\partial^2F_3}{\partial z^2} \right)}$$

$$=\left(\nabla^2F_1,\hspace{5pt}\nabla^2F_2,\nabla^2F_3\hspace{5pt}\right)$$

ここで最後の式の各成分については∇Fなどはスカラー場に対してラプラス演算子が作用する形をとっています。

ベクトル場に対してラプラス演算子を作用させる場合には注意点もあります。
=∇・∇と考える事には問題ありませんが、
例えば\(\nabla\left(\nabla\cdot\overrightarrow{F}\right)\neq(\nabla\cdot\nabla)\overrightarrow{F}\)です。

ベクトル場の発散はスカラー場になりますから、それに対してハミルトン演算子を作用させると結果は再びベクトル場になります。
しかし結果は、\(\nabla\left(\nabla\cdot\overrightarrow{F}\right)\)の例えば第1成分には「Fをxとyで偏微分した関数」が生じるのです。これは∇\(\overrightarrow{F}\) の結果とは異なるものになっています。

この事はスカラー場に対するラプラス演算子の作用の考察において結果的には
「∇=∇・(∇φ)」として扱うけれども単純に括弧を外してナブラをくっつけるのとは違うと考えられる事に関連しています。

通常のベクトルの場合でも、3つのベクトル対して
\(\overrightarrow{C}\left(\overrightarrow{A}\cdot\overrightarrow{B}\right)と\left(\overrightarrow{C}\cdot\overrightarrow{A}\right)\overrightarrow{B}\) は一般的に異なるベクトルです。
そのように、演算の結果同士で等号で結べるものとそうでないものがある事には注意が必要となります。

ナブラで作る「スカラー演算子」

最後に、ナブラ記号を使って発散を表した時の「内積の順番」を入れ換えた形の演算子についても触れておきます。これはスカラー演算子などと呼ばれる事もあります。あるベクトル場とナブラ記号が結び付いて「1つの演算子」として機能します。

$$スカラー演算子:\overrightarrow{A}\cdot\nabla(これでまとめて演算子扱い。)$$

$$\left(\nabla\cdot\overrightarrow{A}であれば\mathrm{div}\overrightarrow{A}の事\right)$$

スカラー演算子はラプラス演算子と似ていてスカラー場とベクトル場の両方に作用させる事ができます。(ラプラス演算子はスカラー演算子の1つであるという見方をする場合もあります。)

より具体的には、ハミルトン演算子(スカラー場に作用する単独の∇)との内積的な計算はしますが偏微分の操作自体はいじらず、3つの偏微分に対して1つのベクトル場の対応する成分が乗じられているというものです。例えば次のようになります。

$$\overrightarrow{A}\cdot\nabla=A_1\frac{\partial}{\partial x}+A_2\frac{\partial}{\partial y}+A_3\frac{\partial}{\partial z}$$

これをスカラー場に演算子として作用させると、別のスカラー場になります。次のようになります。

$$\left(\overrightarrow{A}\cdot\nabla\right)\phi=A_1\frac{\partial\phi}{\partial x}+A_2\frac{\partial\phi}{\partial y}+A_3\frac{\partial\phi}{\partial z}$$

ベクトル場に作用させる場合にはラプラス演算子と考え方は同じで、それぞれの成分に対して演算子が作用するという計算になります。計算結果はベクトルのままです。

$$\left(\overrightarrow{A}\cdot\nabla\right)\overrightarrow{B}=\left(A_1\frac{\partial\phi}{\partial x}+A_2\frac{\partial\phi}{\partial y}+A_3\frac{\partial\phi}{\partial z}\right)\overrightarrow{B}$$

$$=\small{\left( \frac{\partial B_1}{\partial x}+\frac{\partial B_1}{\partial y}+\frac{\partial B_1}{\partial z},\hspace{5pt} \frac{\partial B_2}{\partial x}+\frac{\partial B_2}{\partial y}+\frac{\partial B_2}{\partial z},\hspace{5pt} \frac{\partial B_3}{\partial x}+\frac{\partial B_3}{\partial y}+\frac{\partial B_3}{\partial z} \right)}$$

ラプラス演算子の時と同様に、まず3つのベクトル場ができてから合わさるという考えでも、ベクトル場の各成分にスカラー演算子が作用すると考えても結果は同じです。

このようなスカラー演算子を作用させる例としては、実は3変数関数(スカラー場としてみなせる)に対する全微分がその形を作っています。(2変数の全微分でも考え方自体は同じです。)

スカラー場を3変数のそれぞれによって偏微分し、各項にはdx,dy,dzが乗じられている形ですから(dx,dy,dz)というベクトルとナブラ記号を組み合わせたスカラー演算子を考えれば全微分の形になるわけです。

$$\overrightarrow{R}=(dx,dy,dz)によるスカラー演算子\overrightarrow{R}\cdot\nablaを考えると$$

$$\overrightarrow{R}\cdot\nabla=dx\frac{\partial}{\partial x}+dy\frac{\partial}{\partial y}+dz\frac{\partial}{\partial z}であり、$$

$$スカラー場の全微分d\phi=dx\frac{\partial\phi}{\partial x}+dy\frac{\partial\phi}{\partial y}+dz\frac{\partial\phi}{\partial z}=\left(\overrightarrow{R}\cdot\nabla\right)\phi$$

スカラー場に対して全微分を作る演算子をベクトル場に対して作用させた場合には各成分が全微分の形になり、これをベクトルの全微分と呼ぶ事があります。

$$同じく\overrightarrow{R}=(dx,dy,dz)によるスカラー演算子\overrightarrow{R}\cdot\nablaを考えて$$

$$ベクトル場の全微分d\overrightarrow{F}=(dF_1, dF_2,dF_3)=\left(\overrightarrow{R}\cdot\nabla\right)\overrightarrow{F}$$

$$第1成分だけ記すとdF_1=dx\frac{\partial F_1}{\partial x}+dy\frac{\partial F_1}{\partial y}+dz\frac{\partial F_1}{\partial z}$$

面積要素の変換公式

積分変数としての面積要素dSと、x、y、zで積分した時に使うdx、dy、dzを偏微分を使って結びつける公式について説明します。
積分変数に関する公式ですからもちろん積分に関係しますが、ベクトルとも関連します。
この公式はやや特殊で、使われる場面はベクトル解析の分野のごく一部分に限定されるとも言えます。しかし特定の定理の証明・考察において重要である場合があるので、詳しく解説しておきます。

■より初歩的な内容(内部リンク):

面積要素とは

法線面積分においては曲面上の微小な領域に対する法線ベクトルを考えて、その法線ベクトルの大きさはその微小領域の面積であるとします。
そして、その面積にプラスマイナスの符号があると考えた量を特に面積要素(あるいは面積元素)と呼ぶ事があります。面積要素はdSなどの記号で書かれます。

面積元素dSを大きさとする法線ベクトル(面積要素ベクトル)

式で書くと次のようになります。
各成分は対象の曲面上の微小領域をyz平面、xz平面、xy平面へ射影した領域の面積です。$$d\overrightarrow{S}=(ds_x,ds_y,ds_z)$$ この法線ベクトル\(d\overrightarrow{S}\) の事を特に指して「面積要素ベクトル」と呼ぶ事もあります。
面積要素の絶対値は、このベクトルの大きさに等しいものとします。 \(|dS|=|d\overrightarrow{S}|\)

※「面積ベクトル」という用語は、曲面全体に対する単位ベクトルの法線面積分の事を指す場合があります。
また、法線面積分を考える時には「ベクトル場と単位法線ベクトルの内積を考え、それに面積要素を乗じるという形の形で書く」という形式もあります。ここで言う単位法線ベクトルとは「大きさが1」の法線ベクトルという事です。

法線面積分の計算を進める時には、内積を計算する形で成分ごとに分解した積分を考える事がありますが、その時に考える「スカラー場に対して、yz平面、xz平面、xy平面内の領域の面積要素を積分変数とする」形の積分を単に「面積分」と呼ぶ事もあります。

変換の公式

面積要素dSと、面積要素ベクトルの成分ds、ds、dsの間には実は変換の公式が存在し、それは曲面を表す関数に対する偏微分を使って表されます。

今、曲面を表す関数としてzがz=g(x,y)のような形で表されているとします。(これはベクトル場の成分を表す関数ではなくて、曲面を表す式です。)

面積要素ベクトルの成分dsx, dsy, dszと面積要素dSの変換公式

$$dS=ds_z\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2}$$ $$ds_y=-\frac{\partial z}{\partial y}ds_z$$ $$ds_x=-\frac{\partial z}{\partial x}ds_z$$ この公式を使う時には、曲面を多面体とみなした時に微小な三角形(あるいは平行四辺形)の2辺がそれぞれxz平面上およびyz平面上にあるような分割を考えています。 (法線面積分および面積分の値は分割の仕方には依存しません。)

上記の式を組み合わせて、dsとdsについても面積要素dSとの関係式を作る事が可能です。

これらは決して使いやすい形の公式とは言えないかとは思いますが、ベクトル解析における特定の定理の証明等で使える場合もあります。

法線面積分を行う時の積分をする時の分割の仕方は任意ですが、
偏微分を使った面積要素の変換公式を考える時には
座標軸に平行な直線で区切った長方形の分割を行っています。
曲線上になっている部分は折れ線で近似して直角三角形の分割として考えます。

◆! 注意点・・・
これらの公式はあくまで
「法線面積分およびスカラー場に対する面積分における、
積分変数としての面積要素に対して成立する変換公式」であり、
通常の二重積分等での積分変数の変換(極座標変換など)では使う事はできません。
二重積分や多重積分で積分変数の変換を行う時には、関数行列式を使った変換が必要です。

また、ds/dS,ds/dS,ds/dSは図形的に余弦とみなす事ができて、方向余弦とも呼ばれます。(方向余弦は面積要素ベクトルに対してだけでなく、ベクトル一般に対して考える事ができます。)これらの面積要素ベクトルの方向余弦は、分割の方法を合わせるという前提のもとで上記の公式中の係数で表す事ができます。

余弦とは三角関数の「コーサイン」「cos」の事です。

面積要素ベクトルの方向余弦を偏微分で表す方法

角度は鋭角の場合であるとします。 $$\frac{ds_x}{dS}=\cos\alpha,\hspace{10pt}\frac{ds_y}{dS}=\cos\beta,\hspace{10pt}\frac{ds_z}{dS}=\cos\gamma \hspace{10pt}と置いた時、$$ (※これらは導関数の記号ではなく、普通の「割り算」あるいは「比」を考えています。) $$\cos\alpha=-\Large{\frac{\frac{\partial z}{\partial x}}{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2} }}$$ $$\cos\beta=-\Large{ \frac{\frac{\partial z}{\partial y}}{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+ \left(\frac{\partial z}{\partial y}\right)^2} } }$$ $$\cos\gamma=\frac{1}{\Large{ \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2} }}$$ 曲面の分割は、前述の変換の公式を適用する時と同じであるとしています。
また、\(dS\cos\alpha=ds_x\), \(dS\cos\beta=ds_y\), \(dS\cos\gamma=ds_z\) でもあります。
角度が鈍角の場合にはプラスマイナスの符号が変わります。

公式の導出および証明

上記の公式の証明においてはベクトル場の事は考えず、曲面の事だけを考えます。

面積要素と、面積要素ベクトルの第3成分との関係式の証明

曲面Sの領域の分割が、xy平面への射影を考えた時に辺がx軸とy軸に平行な長方形になるように考えます。曲面の外周部分に関しては長方形を対角線で区切った直角三角形を考えます。

この時に分割された各領域は、1つの共有点を始点(原点と考えます)に持つxz平面上のベクトルと、yz平面上のベクトルを2辺として構成されていると考える事ができます。

それらの2つのベクトルを \(\overrightarrow{a}\) および \(\overrightarrow{b}\) とおきます。
(位置関係は、dxとdyの符号がともにプラスである時に外積ベクトルがz軸のプラス方向を向くようにします。その側が面の表側で、面積要素ベクトルが出る側として考えます。)
今、曲面の各点のz座標はz=g(x,y)のような関数で表せる事に注意すると、
2つのベクトルはzに対するxとyでの偏微分を使って表せます。
\(\overrightarrow{a}\) の(終点の)x座標をdxとして、\(\overrightarrow{b}\) のy座標をdyとすると、次のように書けます。

$$\overrightarrow{a}=\left(dx,0,\frac{\partial z}{\partial x}dx\right),\hspace{15pt}\overrightarrow{b}=\left(0,dy,\frac{\partial z}{\partial x}dy\right)$$

2つのベクトルはそれぞれx軸上およびy軸上にあります。
そのため、1つのベクトルはy成分が0で、もう片方のベクトルはx成分が0です。
曲面を表すz=g(x,y)に対する偏微分は、図形的には座標軸に平行な直線上での近似一次式の傾きを意味します。

この時にこれら2つのベクトルにより構成される平行四辺形の面積(|dS|に等しい)は、公式を使って次のように表されます。対角線で区切った三角形の面積ならその半分になります。

$$dS=\sqrt{|\overrightarrow{a}|^2|\overrightarrow{b}|^2-(\overrightarrow{a}\cdot\overrightarrow{b})^2}$$

$$|ds|=\sqrt{ \left\{dx^2+\left(\frac{\partial z}{\partial x}\right)^2dx^2\right\} \left\{dy^2+\left(\frac{\partial z}{\partial y}\right)^2dy^2\right\} -\left(\frac{\partial z}{\partial x}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2dx^2dy^2 }$$

【平方根の中の2つの項がちょうど同じ値で引き算されて0になります。】

$$=\sqrt{dx^2dy^2+dx^2dy^2\left(\frac{\partial z}{\partial y}\right)^2+dx^2dy^2\left(\frac{\partial z}{\partial x}\right)^2}$$

ここで、平方根の中のdxdyについて2乗した形が共通してどの項にもあるのでdxdyを平方根の外に出す事もできますが、敢えてひとまずこのままにしておきます。

面積要素ベクトルの第3成分(z成分)のdsの絶対値は、微小領域をxy平面に射影した領域の面積になります。【その証明は外積ベクトルの定義からの計算と、平面上のベクトルを使った平行四辺形の面積公式から行います。】

今、微小領域をxy平面に射影すると長方形になるように分割を考えています。
よって、|ds| = |dxdy| と書けます。【外積ベクトルのz成分を考えても同じ事です。】
すると ds = dxdy という事にもなるので、
これをさきほどの計算式に代入します。

$$|dS|=\sqrt{ds_z^2+ds_z^2\left(\frac{\partial z}{\partial y}\right)^2+ds_z^2\left(\frac{\partial z}{\partial x}\right)^2}$$

ここで、dsはプラスとマイナスの両方の符号の場合があり得ます。これは図形的には、実は単純な話です。面積要素ベクトルがz軸のプラス方向側に向いていればそのz成分であるdsの符号もプラスで、逆に面積要素ベクトルがz軸のマイナス方向側に向いていればそのz成分であるdsの符号もマイナスという事になります。

すると、上式ではdsを平方根の外に出す事ができますが、それが式の右辺のプラスマイナスの符号を決める唯一の量になります。よって、面積要素dSの符号はdsによって決定する事になります。式で書けば次のようになります。これで証明完了です。

$$dS=ds_z\sqrt{1+\left(\frac{\partial z}{\partial y}\right)^2+\left(\frac{\partial z}{\partial x}\right)^2}$$

ここでの符号の問題についてはdxとdyを基準に考える事もできます。
外積ベクトル \(\overrightarrow{a}\times \overrightarrow{b}\) が面積要素ベクトルに等しいと考えると、
そのz成分はds=dxdyー0・0=dxdyで、符号まで一致している事になります。
この時、仮にdxとdyのどちらかがマイナスになると位置関係的にも、
外積ベクトル \(\overrightarrow{a}\times \overrightarrow{b}\) はz軸のマイナス側を向く事になります。

もともと符号はプラスと考えた dx と dy の符号を入れ替えた場合の3パターン。
片側だけ符号を反転させた場合のみ、外積ベクトルの方向も反転します。
この外積ベクトルが面積要素ベクトルに等しいと考えれば、
面積要素ベクトルの第3成分とdxdyの符号が一致するようになります。

面積要素ベクトルの第1成分と第2成分についての式の証明

次に、面積要素ベクトルの第1成分(x成分)と第2成分についての式も考えます。

それらを表すには外積ベクトルとして成分を計算したほうが簡単で、次のようになります。

$$再度記すと\overrightarrow{a}=\left(dx,0,\frac{\partial z}{\partial x}dx\right),\hspace{15pt}\overrightarrow{b}=\left(0,dy,\frac{\partial z}{\partial x}dy\right)としているので、$$

$$ds_x=0\cdot\frac{\partial z}{\partial y}dy- \frac{\partial z}{\partial x}dx\cdot dy=-dxdy\frac{\partial z}{\partial x}$$

ここで使っている公式は次のものです。 $$\overrightarrow{a}=(a_1,a_2,a_3),\hspace{10pt}\overrightarrow{b}=(b_1,b_2,b_3)\hspace{10pt}のもとで$$ $$\overrightarrow{a}\times \overrightarrow{b}=(a_2b_3-a_3b_2,\hspace{5pt}a_3b_1-a_1b_3,\hspace{5pt}a_1b_2-a_2b_1)$$ 外積ベクトルの各成分の絶対値は、2つのベクトルを2辺とする平行四辺形を
yz平面、xz平面、xy平面に射影した領域(それも平行四辺形。この記事内での例では長方形)の面積に等しくなっています。

ここで、先ほどの証明の最後で触れましたが面積要素ベクトルを外積ベクトルとして表した場合には符号まで一致してds=dxdyと表す事ができるので、それをそのまま代入する事ができます。すると次のようになって、示すべき式が得られます。

$$ds_x=-\frac{\partial z}{\partial x}ds_z$$

面積要素ベクトルの第2成分についても同様に、
外積ベクトルの成分として計算すると次のように示すべき式を得ます。

$$ds_y=\frac{\partial z}{\partial x}dx\cdot 0\hspace{3pt} – dx\cdot\frac{\partial z}{\partial y}dy=-dxdy\frac{\partial z}{\partial y}$$

$$よって、ds_y=-\frac{\partial z}{\partial y}ds_z$$

この面積要素の変換公式は、ストークスの定理に対する証明の1つの過程で使用する事ができます。

【証明】ガウスの発散定理

電磁気学などでよく使う「ガウスの発散定理」(「発散定理」「ガウスの定理」とも)の証明をします。
ベクトル解析の分野の中の基礎的で重要な定理の1つになります。

電磁気学の「ガウスの法則」は、「ガウスの発散定理」と関係が深いですが、あくまで静電場に関して成立する事実関係としての「法則」を表すものとして用語の使い分けがなされるのが一般的です。

関連事項(内部リンク)

定理の内容

$$以下、ベクトル場を\overrightarrow{F}=(F_1,\hspace{2pt}F_2,\hspace{2pt}F_3)=(F_1(x,y,z),\hspace{2pt}F_2(x,y,z),\hspace{2pt}F_3(x,y,z))\hspace{2pt}とします。$$

ガウスの発散定理とは次のようなものです。

ガウスの発散定理

ある閉曲面内の体積分と法線面積分について、次の関係式が成立します。 $$\int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}$$ $$あるいは、\int\int\int_V \mathrm{div}\overrightarrow{F} dxdydz = \int\int_S F_1 dzdy + \int\int_S F_2 dzdx+ \int\int_S F_3 dydx$$ $$S:閉曲面 V:閉曲面で囲まれた空間領域 $$ $$d\overrightarrow{s}=(ds_x,ds_y,ds_z)【成分には正負の符号がある事に注意】$$ 法線面積分を考えた時に使う面積要素 dxdy 等は、dsx 等と同じく、符号を持つので注意。曲面に表と裏を必ず決め、「裏→表」の向きに面積要素のベクトル\(d\overrightarrow{s}\) を立てて向きと成分の符号を考えます。

特に、次の3式が同時に成立し、加え合わせる事で定理全体が成立する事になります。$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_S F_1 dydz$$ $$\int\int\int_V\frac{\partial F_2}{\partial y}dxdydz=\int\int_S F_2 dzdx$$ $$\int\int\int_V\frac{\partial F_3}{\partial z}dxdydz=\int\int_S F_3 dydx$$

積分の表記の仕方としては、次のように記す事もあります。これらは書き方を変えているだけで、全く同じ積分を表すという意味です。dxdyなどの表記の場合に積分記号を2つ重ねる表記にするのは、具体的な計算をする時には重積分の形になる事によります。$$\int_SF_1ds_x=\int\int_SF_1dydz$$ $$\int_SF_2ds_y=\int\int_SF_2dzdx$$ $$\int_SF_3ds_y=\int\int_SF_3dxdy$$

基本的な考え方は、複素関数論におけるグリーンの公式に似ています。要するに、ある多変数のスカラー関数について、変数が2つの特定の値の時に差をとったものは「その関数の偏微分の定積分」に等しいはず・・という発想を使います。

「スカラー関数の偏微分」を「微分する変数で定積分」する事により、特定の値のスカラー関数の差を作る事ができます。重積分の中でこの考え方を使う時は、偏微分に対する定積分の積分区間の端は一般には「関数の形」になります(yで積分するなら例えばy1=y1(x)というxの関数)。

発想自体は実はすごくシンプルなのですが、幾つか知っておかないとならない定義や公式がある事が「難しい」要因になります。特に必要になる事項を4つほど簡単に整理しておきます。

使う定義と公式の整理
①ベクトル場の「発散」の定義

ベクトル場\(\overrightarrow{F}\) に対する「発散」は次のようなスカラー関数です。 $$\mathrm{div}\overrightarrow{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y} +\frac{\partial F_3}{\partial z}$$

②法線面積分の定義

法線面積分は、次のように計算できるものとして定義されます。 $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int_S (F_1 ds_z + F_2 ds_y + F_3 ds_z)=\int_SF_1 ds_x+\int_SF_2 ds_y+\int_SF_3 ds_z$$積分記号に添えてあるSは、「特定の閉曲面S」の表面の全域(あるいはそれに対応する領域)に渡って積分をするという意味です。dsz および dxdy 等を面積要素とも言います。(dsz および dxdy は共にxy平面上の領域の面積要素。)

③ \(d\overrightarrow{s} \)の座標成分と射影面積の関係

$$ d\overrightarrow{s}=( ds_x , ds_y , ds_z ) $$

  • \(|ds_x| \):微小領域の「yz平面」への射影領域の面積
  • \(|ds_y| \):微小領域の「xz平面」への射影領域の面積
  • \(|ds_z| \) :微小領域の「xy平面」への射影領域の面積

特に三角形の微小領域を考えると、外積ベクトルの性質によりこれらの関係が明確になります。

④体積分と重積分の関係

体積分は、特定の空間領域の全域に渡ってスカラー関数を積分するものです $$\int_V G(x,y,z) dv=\int\int\int_V G(x,y,z) dxdydz$$。dv =dxdydz を体積要素とも呼びます。
特別な場合では体積要素 dv のまま具体的な計算もできますが、通常は体積要素を dxdydz の形にして重積分にしないと計算は難しい事が多いです。
具体的な関数があって積分の値を計算する時は、次のように、通常の重積分と同じく累次積分を行います。 $$\int\int\int_V G(x,y,z) dxdydz=\int_{Z1}^{Z2}\int_{Y1}^{Y2}\int_{X1}^{X2} G(x,y,z) dxdydz$$ この時に積分する変数の順番は変えられますが、積分する領域の形状によっては、初めに積分する2つの積分区間は定数ではなくて関数になります。ここでの例だと X1=X1(y,z), Y1=Y1(z) 等です。

発散定理(ガウスの定理)の考え方②

発散定理における閉曲面の扱い

積分する範囲が「閉曲面」である事は定理の性質・証明において重要です。

閉曲面とは球や楕円体などの閉じられた曲面の事です。
(ただし直方体等の「角ばった箇所」がある閉じられた立体においても、定理は成立します。証明の過程を見ると、その事は分かりやすいかと思います。)

閉曲面は、凹んだような箇所がある曲面である場合もあります。
しかし、発散定理の証明においては実は「凹みがない」球のような曲面で成立する事を示せば十分です。それは、面積分に関して曲面は分割するできるからです。

例えば閉曲面を平面で真っ二つにした場合には、切断面の部分(2つに分かれた閉曲面の共有部分)では2つの積分の値が絶対値は同じで逆符号になります。それを加え合わせるとゼロになります。これは、共有される切断面においては「ベクトル場は同じ」で分割された2つの閉曲面同士で「法線ベクトルが絶対値は同じで逆符号」である事に起因します。

そのため、凹みのある閉曲面は出っ張ったところで切断して2つ以上の閉曲面に分けてしまう事により、法線面積分も2つの「凹みのない」閉曲面での法線面積分の和にできるのです。
(体積分に関しても、閉曲面を分割すると分割した領域での体積分を加えれば全体になります。)

つまり、発散定理の証明は「凹みのない」閉曲面で示されれば、凹みのある閉曲面で成立する事も示されるという事です。

発散定理(ガウスの定理)における閉曲面の扱い

証明

まず、次式から証明します。閉曲面は凹みがないものとします。

$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_S F_1 dydz$$

これ1つが証明できれば、他の2式も同じ形なので全く同様に証明できます。
最後に3式を加え合わせれば発散定理の形になります。

積分する前の段階で微小領域を考えると、\(d\overrightarrow{s}=( ds_x , ds_y , ds_z )\)の第1成分dsの絶対値は微小領域のyz平面への射影面積になります。

ところで、yz平面への「同じ射影の領域」を持つ閉曲面の微小領域は必ず2つ存在し、それらの第1成分は必ず符号のプラスマイナスが異なります。同じ射影の領域を持ちますから\(d\overrightarrow{s}\)の第1成分は「同じ大きさで異符号」です。

しかも、その組み合わせの合計で閉曲面は全て覆える事になります。ベクトル場の第1成分Fとdsの積を合計したものはyz平面上の積分になります。【Fは関数F(x,y,z) である事に注意。】
ただし、yz平面上で積分をすると、対応する閉曲面の領域は2つありますから、dsの符号がプラスになる部分とマイナスになる部分に分けられます。

射影領域と閉曲面の関係
凹みのない閉曲面ではxy平面への同一の射影領域を持つ部分が2つ存在し、それらの微小領域に対する法線ベクトルのz成分は互いに異符号になります。yz平面、xz平面への射影についても全く同様に考える事ができます。

ここで、閉曲面Sのyz平面への射影領域であり、yz平面での積分範囲でもある領域をSyzと置きます。
この平面領域Syzは、「表と裏」に関して次の約束事をしておきます:

◆約束事:平面領域Syz
x方向のプラス方向に面した部分が「表」でx方向のマイナス方向に面した部分が「裏」
と決めます。
つまりこの領域Syz上での面積要素のベクトルは\(d\overrightarrow{s}=(ds_x,0,0)\) であり「ds およびdydzの符号は、必ずプラス符号として考える」という事です。
発散定理(ガウスの定理)の証明
ベクトル場の第3成分とxy平面(の射影)での積分を考えた場合はこの図のようになります。図の下側の領域では「もとの閉曲面Sでの面積要素」の符号が全てマイナスなので、「面積要素がプラス符号の平面領域(図のSxy)」での積分として表記する場合には積分全体に対してマイナス符号をつける形になります。

またyとzの関数X(y,z)とX(y,z)を考えて、
それらは各々「yz平面への同じ射影領域を持つ」2つの微小領域でのx座標であるとします。
(領域を2分割して考える時に「x座標の『yとzによる関数』の形」が違うためにそのように考えます。)
すると、閉曲面全体のベクトル場の第1成分Fのyz平面上の領域Syzでの積分は、
次のように差の形で表せる事になります。

$$\int_SF_1ds_x=\int\int_{Syz}F_1(X_B,y,z)dydz-\int\int_{Syz}F_1(X_A,y,z)dydz$$

第1項目はもとの閉曲面で面積要素のベクトルの成分dsがプラス符号である領域の積分です。
第2項目はもとの閉曲面で面積要素のベクトルの成分dsがマイナス符号である領域の積分であり、
領域Syzでの積分では面積要素はプラス符号で扱うと約束しているので「マイナス」は積分全体につける形をとっているわけです。

ここで、差の形になっている部分を、「x方向の『偏微分の定積分』」として考える事ができます。

$$\int\int_{Syz}F_1(X_B,y,z)dydz-\int\int_{Syz}F_1(X_A,y,z)dydz=\int\int_{Syz}\left(\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dx\right)dydz$$

領域Syzでの積分についてもy方向とz方向の積分区間を書くと次のようになります。

$$\int\int_{Syz}\left(\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dx\right)dydz=\int_{\large{Z_B}}^{\large{Z_A}}\int_{\large{Y_B}}^{\large{Y_A}}\int_{\large{X_B}}^{\large{X_A}}\frac{\partial F_1(x,y,z)}{\partial x}dxdydz$$

$$=\int\int\int_V\frac{\partial F_1(x,y,z)}{\partial x}dxdydz$$

ここで重積分の形にした箇所のdx、dy、dzは全てプラス符号です。つまり「積分変数自体の符号は気にしない」で計算可能な、通常の積分として考えてよい事になります。(体積要素としてdxdydzをdvと置き、1つの塊として見た時も符号はプラスだけで考えます。)

重積分を累次積分する時の積分の順番は入れ替え可能ですが、積分区間は最後に積分するところを除いて一般には関数になります。
例えば上記の場合の重積分の箇所においてx→y→zの順で累次積分をする場合、積分区間に入っているXとXはyとzの関数【定数である事もあり得る】であり、YとYはzの関数、ZとZは何らかの定数という事になります。
累次積分の順番を変えるとどの積分区間が何の変数のどういう関数形になっているかは変わりますが、同じ関数を同じ領域で積分すれば同じ値を得ます。

これで証明の大体の部分は完了しています。

ところで一番最初の積分については、dsをdydzの形で表記する事もできます。(dxdyの形にする時は、積分記号は重積分のように2つ重ねる表記にします。)

$$\int_SF_1ds_x=\int\int_SF_1dydz$$

これらの結果を等号で結ぶと、証明すべき式になります。

$$\int\int\int_V\frac{\partial F_1}{\partial x}dxdydz=\int\int_SF_1dydz【証明終り】$$

同様に、Fについてはxz平面上の積分を考えて、差の形をyでの偏微分の定積分で表します。Fについてはxy平面上の積分を考えて、差の形をxでの偏微分の定積分で表します。

$$\int\int\int_V\frac{\partial F_2}{\partial y}dxdydz=\int\int_SF_2dzdx$$

$$\int\int\int_V\frac{\partial F_3}{\partial z}dxdydz=\int\int_SF_3dxdy$$

3式を加え合わせると次のようになります。

$$\int\int\int_V\left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dxdydz=\int\int_S(F_1dydz+F_2dzdx+F_3dxdy)$$

$$\Leftrightarrow \int_V \mathrm{div}\overrightarrow{F} dv = \int_S \overrightarrow{F}\cdot d\overrightarrow{s}【発散定理の形】$$

上記の発散定理における閉曲面の扱いで記したように、閉曲面に凹みがある場合でも領域を切断して分割する事で定理が成立します。

法線面積分の定義と性質

ベクトル解析電磁気学の分野で使用する「法線面積分」は、閉曲面に分布するベクトル場に対して定義されるものです。ベクトル場とは、すなわちベクトルの3成分のいずれもがx、y、zのスカラー関数になっているベクトルです。

閉曲面と閉曲線
閉曲面とは、例えば球や楕円体などの、「閉じた」曲面です。(ドーナツ型・うきわ型の「トーラス」なども含みます。)また、閉曲線とは、円や楕円のように、ぐるっと一周つながった曲線を言います。

★書籍の紙面ではベクトルを表す表記として文字をボールド体にする方法が多く使われますが、このページではベクトルは一貫して文字の上に矢印を添える表記方法を採用します。
スカラー関数に対する「面積分」は似ていますが別物なので注意。具体的な計算方法も異なります。

ベクトルの内積の考え方を使用します。

法線面積分を表す式には幾つかの表記方法がありますが、次のようになります。いずれも等号で結ぶ事ができ、計算すれば同じ値になります。

「法線面積分」の定義

$$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int_S (F_1 ds_1 + F_2 ds_2 + F_3 ds_3)=\int_SF_1 ds_1+\int_SF_2 ds_2+\int_SF_3 ds_3$$ $$\overrightarrow{F}=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z))$$ $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}を、\int_S \overrightarrow{F}\cdot \overrightarrow{n}dsとも書きます。$$ 積分記号に添えてあるSは、surface(表面)からの記号として一般的に使われる記号です。
特定の閉曲面の表面全体(表側あるいは裏側のいずれかの全体)を表します。

また、二重積分で表して計算する事も可能です。その場合、各項の具体的な計算をする時には2方向の積分区間をきちんと指定します。 $$\int_S \overrightarrow{F}\cdot d\overrightarrow{s}=\int\int_S (F_1 dydz + F_2 dzdx + F_3 dxdy)$$ $$=\int_{Y1}^{Y2}\int_{Z1}^{Z2}F_1 dydz+\int_{Z1}^{Z2}\int_{X1}^{X2}F_2 dzdx+\int_{X1}^{X2}\int_{Y1}^{Y2}F_3 dxdy$$

\(\overrightarrow{n}\) は、曲面の各点に対する単位法線ベクトルを表し、長さは1で曲面に対し垂直な向きのものです。また、\(d\overrightarrow{s}=ds\overrightarrow{n}\) になります。詳しくは次のようになります。

法線ベクトル

$$ d\overrightarrow{s}=( ds_1 , ds_2 , ds_3 ) $$ $$|\overrightarrow{n}|=1,\hspace{10pt}|d\overrightarrow{s}|=ds=\sqrt{ds_1^2 + ds_2^2 + ds_3^2},\hspace{10pt}d\overrightarrow{s}=ds\overrightarrow{n}$$ \(d\overrightarrow{s}\) および単位法線ベクトル\(d\overrightarrow{n}\) は、閉曲面上の各点から曲面の「裏側→表側」に向かう向きに伸びると約束します。
各成分は、微小面積の平面への「射影」になっています。

  • \(|ds_1| \)=「yz平面」への射影領域の面積
  • \(|ds_2| \)=「xz平面」への射影領域の面積
  • \(|ds_3| \) =「xy平面」への射影領域の面積
証明:微小面積として三角形を考えた場合、\(d\overrightarrow{s}\) は2辺を成すベクトルで作られる外積ベクトルの半分として表されます。
外積ベクトルの成分の大きさ(絶対値)はyz平面、xz平面、xy平面への三角形の射影の面積に等しくなりますから、\(d\overrightarrow{s}=( ds_1 , ds_2 , ds_3 )\) の各成分の大きさも、垂直な3つ平面への微小面積の射影面積に等しくなる事が示されます。

法線ベクトルの成分ds、ds、dsには通常のベクトルと同じく符号があります。
式としては、法線ベクトルと射影平面に垂直な軸がなす角の余弦の符号と同じプラスマイナスの符号を持つと定義します。例えば、dsであれば対応する射影平面がyz平面で、それに垂直な軸はx軸ですから、法線ベクトルとx軸がなす角を見ます。それが鋭角であればdsの符号は+で、鈍角であれば-の符号になります。その符号は、座標上の図に描いてみた時の向きから判定したものともちろん一致します。

図で状況を見ながら式の意味を考えると分かりやすいでしょう。
つまり、球面などの閉曲面の各点にベクトル場がぎっしり詰まっている感じです。それを曲面全体に渡って積分します。その際に、ベクトル場の「曲面の法線ベクトルの向きの成分だけ」を内積によって取り出したものを考えているわけです。

曲面に垂直な法線ベクトル(大きさは微小面積)を考え、ベクトル場との内積を考えます。法線ベクトルのうち、長さを1としたものを「単位法線ベクトル」と言います。

微小面積を大きさに持つ法線ベクトル\(d\overrightarrow{s}=ds\overrightarrow{n}\)と微小面積の射影面積との関係も、図に描いて外積ベクトルとして捉えると見通しがよいです。

法線ベクトルと外積の関係
平行四辺形で考えても本質は同じです。外積を使うと少見通しはよくなります。内積がスカラーであるのに対し、外積はベクトルである事に注意。微小な三角形の面積を外積ベクトルの大きさで表すと、そのベクトルの各成分は微小三角形のyz、xz、xy平面への射影面積になります。

法線ベクトル\(d\overrightarrow{s}\)の成分の符号については、個々の法線ベクトルについて例えば(-1,2,1)といった成分表示となる事からプラスマイナスの符号を持ちます。各成分の「大きさ」については、微小面積のyz平面、xz平面、xy平面への射影面積に等しくなるという事です。

法線ベクトルの成分の符号
法線ベクトルの向きは「閉曲面の裏から表に向かう方向」にとります。その成分は法線ベクトルの具体的な向きによって+か―の符号があります。式で書く場合は、法線ベクトルと軸とのなす角の余弦によって符号を判定します。

積分内の内積の部分については、余弦を使ったほうの内積の定義として書く場合もあります。

$$\overrightarrow{F}\cdot d\overrightarrow{s}=|\overrightarrow{F}||\overrightarrow{s}|\cos \theta$$

ただし、電磁気学などで法線面積分を考える場合では、特別な形のモデルで最初から考える場合も多いのです。例えば、ベクトル場が曲面に全て垂直であれば公式を使わなくても角度は0とすぐに判断できて、余弦は1になります。

グリーンの公式【複素関数論】

ここでは複素関数論におけるグリーンの公式と呼ばれる式について説明します。
同じ名前の公式はいくつもあって大変紛らわしいのですが、ここでは複素関数論の、複素数の積分に関して成立する関係式について述べます。

この公式は、複素関数論で重要なコーシーの積分定理を証明するのに必要です。

複素数の定義と基本事項については別途に詳しくまとめています。

グリーンの公式とは?

公式の内容 ■ 公式の別の表記法 ■ 複素関数論の中での位置付け 

公式の内容

複素関数論におけるグリーンの公式とは、次の複素数の積分に関する関係式を言います。

グリーンの公式 $$\int_C f(z)dz=\int\int_D\left(i\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)f(x,y)dxdy$$ $$z=x+iy,\hspace{5pt}C:閉曲線,\hspace{5pt}D:閉曲線Cで囲まれる領域$$

$$ここで、\left(i\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)f(x,y)=\left(i\frac{\partial f(x,y)}{\partial x}-\frac{\partial f(x,y)}{\partial y}\right)\hspace{5pt}の事です。$$

また、ここでのxやyでの偏微分は、
これらの変数を「独立変数であるように見なした時の」偏微分の計算を指します。

そのように言うのは、ここでは積分の経路として閉曲線を指定しますから、xとyは独立変数ではなく従属関係にあるからです。(例えばy=2xなど。これについてはこのページの後半でも再度触れます。 )

ただし、ここでの偏微分で表される計算は、通常の独立多変数に対する偏微分の時と同じく、「yを固定してxだけで微分操作をする」という意味である・・という事です。

グリーンの公式【複素関数論】1
グリーンの公式とコーシーの積分定理は、複素関数論の積分の理論の中でも重要な箇所の1つですが、いかんせん、少々分かりにくいところでもあるかと思います。
この結果自体が得られると、その後の理論はしばらくの間は割と難しい理屈が少なく進んでいくところがあります。

公式の別の表記法

全く同じ公式を、別の表記で表す事もあります。

これは、形式的には「複素変数zで偏微分する」形で表されますが、じつはこれは普通の意味での偏微分ではなく、複素関数論において特別に定義される記号です。

定義

z=x+iyの時、記号を次のように定義します:

$$\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$$ $$\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$$

この記号を使うと、上記のグリーンの公式は次のように書けます。

グリーンの公式の別の表記法 $$\int_C f(z)dz=2i\int\int_D\frac{\partial}{\partial \bar{z}}f(x,y)dxdy$$ $$z=x+iy,\hspace{5pt}C:閉曲線,\hspace{5pt}D:閉曲線Cで囲まれる領域$$

どちらの表記法でも問題ないですが、記号の定義を知らないと、「共役複素数で偏微分って何の事・・??」と、思ってしまうかもしれませんね。その記号は、あくまで定義によって特別に意味が約束されているものです。

複素関数論の中での位置付け

冒頭で少し触れていますが複素関数論の複素数の積分論の中で、「コーシーの積分定理」というものがあります。これは、正則関数を閉曲線に沿って定積分すると必ず0になるというもので、これをもとに種々の複素数の積分の理論は組み立てられています。

それで、その積分定理は自明な事かというと、そうではありません。その定理の証明のためにグリーンの公式が使用されます。

ですから複素関数論におけるグリーンの公式とは、言ってみれば理論上重要な定理の「補題」的な位置付けにあると言えると思います。

もちろん、必要があれば他の用途に使う事もできます。また、考え方自体は多変数関数の線積分や、ベクトル解析に共通するところがあるのでそれらの分野にも考え方を適用できます。

グリーンの公式の証明

証明のポイント ■ 積分経路と媒介変数 ■ 証明の計算 

証明のポイント

積分の経路として「閉曲線」考えている事と、定積分を行う場合には複素数の実部と虚部に分けて考えてよい事がポイントです。

公式の内容を見ると、曲線上の積分を領域内の重積分で表せるという事であるわけですが、ある関数はその導関数の定積分として上手く表せる事を利用します。この考え方はベクトル解析での定理の一部を示す時にも使用されます。

導関数をうまく使う $$\int_a^b\frac{df}{dx}dx=f(b)-f(a)$$

考え方はシンプルで、微積分学の基本定理をうまく使います。

定積分を考える時には項が2つ出てきてしまいますが、閉曲線を考えている事がポイントで、上手い具合に閉曲線の「上部分」「下部分」等の2つの部分に分けて必要な項を作れるのです。この時、後述しますがxとyによる積分それぞれについてそれらを考えるので、少なくとも4つの経路を考え、最後に合算します。

証明の後半では重積分の結果は積分変数の順序によらない事も使用します。

積分経路と媒介変数

dz=dx+idy において、閉曲線Cを指定する場合はxとyに従属関係があって、
1つの媒介変数tで表す事ができます。

$$x=x(t),\hspace{5pt}y=y(t)$$

複素数の積分と積分経路
積分経路が指定されているという事は、例えばy=3x などの何らかの関係があるという事です。
(より一般的には閉曲線ならg(x,y)=0が成立。例えば円や楕円。)
積分する時にはxとyを別々に考える事ができるのであまり気にしなくてもよいのですが、 補足的に、述べておきます。

そこで、微分についても z=z(x,y) に対して次の関係があるわけです:

$$dz=\frac{\partial z}{\partial x}\frac{dx}{dt}dt+ \frac{\partial z}{\partial y}\frac{dy}{dt}dt $$

ここで、x、yによる偏微分は
「あたかも独立変数であるように、1つの変数のみで微分する」操作の意味です。

tによる微分の部分は、媒介変数が1つだけですので、
偏微分として書かなくてもよく通常の微分になります。

さて、となると、z=x+iy ですから、

$$ \frac{\partial z}{\partial x} =1,\hspace{10pt} \frac{\partial z}{\partial y} =i $$

となるので結局、

$$dz=\frac{dx}{dt}dt+ i\frac{dy}{dt}dt $$

という事になり、tで定積分を行う場合には1変数の合成関数の積分公式がそのまま使えて、結局xとyのそれぞれで積分して加えればよいという事です。

合成関数の積分公式を使える。 $$\int_U^Wf(z)dz=\int_{T1}^{T2}f(z)\frac{dz}{dt}dt=\int_{T1}^{T2}f(x,y)\frac{dx}{dt}dt+ \int_{T1}^{T2}if(x,y)\frac{dy}{dt}dt $$ $$=\int_{X1}^{X2}f(x,y)dx+\int_{Y1}^{Y2}f(x,y)dy$$

定積分においては、積分変数以外の変数は定数扱いで計算するとします。

もともとdz=dx+idyなので最初から積分する時には定積分を2つの部分の和にできると考えてもよいのですが、ここでは積分経路上でyとxには従属関係がある点に注意して説明をしておきました。

証明の計算

【グリーンの公式の証明】

さて、閉曲線上を経路として定積分する時にxとyに分けて定積分すればよいわけですが、ここでさらに、積分経路もxとyの各々について2つ以上に分けます。少なくとも4つの定積分を考える事がポイントです。

まずxについて。
閉曲線を切断するような、yが一定の直線分と、平面図上で閉曲線の上側の部分と下側の部分を考えます。この時、直線分に対して必ず上下に閉曲線の一部が対になって存在するようにします。このような閉曲線の分割を最低でも1つ行い、ものによっては2つ以上行います。

グリーンの公式【複素関数論】2
直線状の補助線(図の Cx 等)は、なくても証明できます。
ただし、ここでは分かりやすくするために入れています。

ここで、f(z)=f(x,y)=f(x+iy) である事に注意します。まず「直線状の線分と閉曲線の下側の経路」(必ずしもつながってなくてもいい)で構成されるxによる定積分を、ぐるりと反時計周りに1周するように考えます。

$$\int_{C1}f(z)dx-\int_{CX}f(z)dx=\int_{X1}^{X2}f(x+iy)dx- \int_{X1}^{X2}f(x+iY_1)dx $$

$$=\int_{X1}^{X2} \left( – \int_ {y(x)}^{Y1} \frac{\partial}{ \partial y}f(x+iy)dy\right)dx = -\int_{X1}^{X2} \left(\int_ {y(x)}^{Y1} \frac{\partial}{ \partial y}f(x+iy)dy\right)dx $$

分割に使う直線分が2つ以上の場合も同様に定積分を考えておきます。

関数f(x,y)=f(x+iy) を、積分変数のみに着目した意味での(偏)導関数を定積分したものと考えるわけです。(プライスマイナスの符号に注意。)この考え方はベクトル解析などでも使います。

次に、 「直線分と閉曲線の上側の経路」で構成されるxによる定積分を、反時計周りに1周するように考えます。この時、直線部分は上記と同じものを共有してますが、積分の方向が逆です。曲線部分も積分の方向が逆なので符号が変わる点がポイントです。

$$-\int_{C2}f(z)dx+\int_{CX}f(z)dx=-\int_{X1}^{X2}f(x+iy)dx+\int_{X1}^{X2}f(x+iY_1)dx $$

$$= -\int_{X1}^{X2} \left( \int_{Y1}^{Y(x)}\frac{\partial}{ \partial y}f(x+iy)dy\right)dx $$

さきほどとは曲線が別のものになるので、y = y(x) ではなく y = Y(x) という形に書いて区別しています。

ここで、上記の2つのxについての「反時計回り」の定積分を加え合わせると、

$$\left( \int_{C1}f(z)dx-\int_{CX}f(z)dx \right)+ \left( -\int_{C2}f(z)dx+\int_{CX}f(z)dx \right) = \int_{C1}f(z)dx -\int_{C2}f(z)dx $$

$$= -\int_{X1}^{X2} \left( \int_ {y(x)}^{Y1} \frac{\partial}{ \partial y}f(x+iy)dy\right)dx -\int_{X1}^{X2} \left( \int_{Y1}^{Y(x)}\frac{\partial}{ \partial y}f(x+iy)dy\right)dx $$

$$= -\int_{X1}^{X2} \int_{y(x)}^{Y1} \frac{\partial f(x+iy) }{ \partial y}dxdy- \int_{X1}^{X2} \int_{Y1}^{Y(x)} \frac{\partial f(x+iy) }{ \partial y}dxdy $$

$$ =-\int_{X1}^{X2} \int_{y(x)}^{Y(x)} \frac{\partial f(x+iy) }{ \partial y}dxdy=-\int\int_D \frac{\partial f(x,y) }{ \partial y}dxdy $$

このように、もとの関数を(1つの変数以外は固定する意味で)偏微分したものの領域内に渡って重積分したものになるわけです。結果的にマイナス符号がついたのは「反時計回り」を考えた事に由来し、仮に「時計回り」を考えるならこの符号は逆になりプラスになります。xが変数の場合、右から左と、左から右に積分する場合では符号は逆になります。

上記のように重積分の形になると、それを「領域全体にわたって行う積分」とみなせます。

重積分についての補足
【重積分】通常の2変数の重積分は「体積」を計算する事に使ったりします。 複素関数の場合には体積を計算しているわけではありませんが、行っている計算と考え方は同じです。

分割が2つ以上の場合でも、定積分を全て加え合わせて閉曲線が全てつながるようにします。(補助的に考えている直線状の線分の部分は、分割がいくつであっても全てプラスマイナスが打ち消し合って定積分の合計は0になります。)

今度は、yについての定積分についても同じ事をやります。途中の計算は全く同じなので少々省きますが、次のようになるのです。

$$\left( \int_{C3}f(z)dy-\int_{CY}f(z)dy \right)+ \left( -\int_{C4}f(z)dy+\int_{CY}f(z)dy \right) = \int_{C3}f(z)dy -\int_{C4}f(z)dy $$

$$ =\int_{Ya}^{Yb} \int_{x(y)}^{X(y)} \frac{\partial f(x+iy) }{ \partial x}dxdy=\int\int_D \frac{\partial f(x+iy) }{ \partial x}dxdy $$

yのほうには i を添えたうえで、得られた結果を合わせると次のようになります。

$$ \int_{C1}f(z)dx -\int_{C2}f(z)dx + i\int_{C3}f(z)dy -i\int_{C4}f(z)dy $$

$$= \int\int_D \left( – \frac{\partial }{ \partial y} +i\frac{\partial }{ \partial x} \right) f(x+iy) dxdy= \int\int_D \left( i\frac{\partial }{ \partial x} – \frac{\partial }{ \partial y} \right) f(x,y) dxdy $$

分割した部分がxとyについて合わせて4つを超える場合でも同じで、全て加え合わせます。

再びdz=dx+ i dyに戻ると、閉曲線C上で反時計周りに定積分を行う場合は次のようになります。

$$\int_Cf(z)dz=\int_Cf(x,y)dx+i\int_Cf(x,y)dy$$

$$= \int_{C1}f(z)dx -\int_{C2}f(z)dx + i\int_{C3}f(z)dy -i\int_{C4}f(z)dy $$

分割の部分が多い場合も同様です。もとの閉曲線の曲線部分が全て入るようにします。

xについては、左→右:+符号 右→左:逆で-符号
yについては下→上:+符号 上→下:-符号 として部分ごとに定積分を対応させます。

これによって、結局公式の通りの関係式が成立する事になります。

$$ \int_Cf(z)dz=\int_Cf(x,y)dx+i\int_Cf(x,y)dy = \int\int_D \left( i\frac{\partial }{ \partial x} – \frac{\partial }{ \partial y} \right) f(x,y) dxdy 【証明終り】$$

参考:長方形による近似を使う証明の方法

参考までに、積分経路として小さな「長方形」を考えて、これの合計として任意の閉曲線を経路とする時も成立するという証明の仕方もあります。

こちらの考え方だと、長方形ですので最初からxのみ、yのみという考え方が使えて、積分の計算がらくです。積分の方向を反時計回りという事で決めておけば、ぴったり隣り合う長方形同士の接する辺同士は積分が打ち消し合って周囲だけの分が経路として残るというわけです。

ただしこの方法の場合、じつは経路自体の形が「長方形 → 任意の(滑らかな)閉曲線」に移行する段階の時の話が少し面倒です。実際、円のような曲線を多角形で近似するような事は珍しくありませんが、「長方形」で近似するという事は、他の数学の分野ではあまり多くやらない事かと思います。一般の多くの複素関数論の教科書では、この詳細をあまり書きたがらない傾向があるように思います。

本質的には上記で述べた証明方法と比べて、やる事はそんなに変わりません。

グリーンの公式【複素関数論】3
長方形の経路を組み合わせて証明する方法もあります。

前述の通り、複素関数論におけるグリーンの公式は、コーシーの積分定理に結びつく事で、さらなる積分の理論を組み立てる事に使われていきます。

複素数の微分【複素関数論】

このページでは複素数微分について述べます。
大学数学では複素関数論(あるいは単に「関数論」)と呼ばれる領域です。

数学上の理論でも応用でも重要なのはむしろ複素数の「積分」のほうですが、面倒なのも積分のほうです。

まず基本的な考え方として微分のほうをここでは説明します。

複素数の微分・・実数の時と何が違う?

まず、具体的な初等関数を微分するレベルにおいては実数の時とほとんど同じです。

定義域が複素数の初等関数の微分・・実数の時とほぼ同じ
テイラー展開・マクローリン展開も同様に可能
複素関数論に特有の議論はあるの? 

複素関数の微分
複素関数論(複素数の微積分)・・実数の時と同じように考えてよいところと、
別の数学的考察が必要になる部分のポイントをこのページでは説明します。

定義域が複素数の初等関数の微分・・実数の時とほぼ同じ

複素数を定義域 (変数の範囲)および値域(関数の値の範囲) に持つ関数を複素関数といます。複素関数の微積分を扱う数学の領域を複素関数論(あるいは略して「関数論」)とも言います。複素関数に対して、通常の実数の範囲の関数を「実関数」と呼ぶ事もあります。慣習で、複素関数の変数は x ではなく z で表す事が多いです。ただし、定義域が複素数範囲である事を明示すれば本質的に何の文字を使おうが間違いではありません。

結論を先に言うと、初等関数の定義域を複素数に拡張したものを微分してできる導関数は、定義域が実数の時と同じです。

複素関数の微分公式【実関数と同じ】

初等関数に関しては、実関数の時と同じ形の次の公式が成立します。 $$\frac{d}{dz}z^r=rz^{r-1}$$ $$\frac{d}{dz}e^z=e^z$$ $$\frac{d}{dz}\cos z =-\sin z$$ $$\frac{d}{dz}\sin z = \cos z$$ $$f(z)g(z)=\frac{df}{dz}g(z)+\frac{dg}{dz}f(z)$$ その他、実関数に関する公式は大体そのまま成立します。
また、微分の記号も全く同じものを使用します。

★じつのところ、理論として高校数学から直ちに飛びつけない部分は、例えば指数関数や三角関数の場合に「複素数が変数の時にはどういう値をとるのか・・?」という事です。
例えば、cos(2i) などは、ちょっと何の値になるのか(何の値にすべきなのか)分かりませんね。
これについては「複素数の指数関数表示」が大いに関わります。このページでは、個々の関数の定義域の拡張方法についてはとりあえず置いておき、複素関数の微分の全体像について解説します。

テイラー展開・マクローリン展開も同様に可能

初等関数に対して微分が実関数の時と同じ演算で可能という事は、高階微分も同じ計算になるはずで、実際そうなります。そして、初等関数の定義域を複素数に拡張した時も、実関数の時と同様にテイラー展開やマクローリン展開が可能なのです。

例えば、定義域が複素数であっても、三角関数や自然対数の底の指数関数は次のようにマクローリン展開ができます。

$$\sin z=z-\frac{z^3}{3!}+\frac{z^5}{5!}-\cdots$$

$$e^z=1+z+\frac{z^2}{2}+\frac{z^3}{3!}+\cdots$$

※解析学的に、極限の事を厳密に考えていくと実関数との違いは考察として必要になります。その基礎の1つについては後述します。

複素関数論に特有の議論はあるの?

さてこれらの「結論」を見ると、結局複素数の微分というのは定義域を複素数にまで伸ばせばいいだけの話で、数学的にあまり考察する意味はないのでは・・?と、思われるかもしれません。

とりわけ、数学の応用を考える場合はそう思うかもしれませんね。

そこで次に、複素関数の微分において、実関数と違う考察が必要な点を次に述べましょう。これは、複素数の積分のほうを考える時に必要な知識の1つにもなります。

具体的には偏微分を使った考察を行う事になります。実数関数の場合には2変数以上を扱う時に限り偏微分についての考察も必要だったわけですが、複素数を扱う時にはx+yiという形で常に2変数扱うとみなす事もできるので、偏微分も(および全微分も)初歩的な段階から考察対象になるのです。

ただし前述のように、常に2変数と偏微分等を考えないといけないという事ではありません。複素数zを1かたまりとみて1つの変数扱いにできる場合も確かにあるわけです。そこの使い分けが、確かに実数関数の場合と比べて少しトリッキーです。

複素関数の微分の数学的な考え方の詳細

まず微分以前の話として、複素関数というものは実部と虚部という2つの実数部分から、別の複素数の実部と虚部ができるという多変数の関数の一種として考える必要が本来はあります。その考え方をもとに、複素数の微分を改めて捉えてみましょう。

複素関数の実部と虚部はともに2変数関数
複素関数で成立する偏微分の公式(コーシー・リーマンの式)
「正則」という考え方 

複素関数の実部と虚部はともに2変数関数

ある複素数 z = a + bi を2乗するという関数を考えてみると、

$$z^2=(a+bi)^2=a^2-b^2+2abi$$

ここで、結果の式の実部を u、虚部の実数部分を v とすると、u は a と b の関数、v も a と b の関数になります。まず、この考え方が重要です。

つまり、一般の複素関数については次のように考えます。

$$z=x+yi\hspace{3pt}に対して \hspace{3pt}F(z)=u(x,y)+iv(x,y)$$

もとの複素数が変数の時、それが2つの実変数から構成されていて、それらから2つの別の2変数関数が構成されて新しい複素数を作るというわけです。

複素関数
この図で、x と y は変数、u と v は関数(実関数)です。
u, v ともに、x と y による2変数関数 u(x,y) , v(x,y) になります。
z は複素数(変数)、F(z) は「複素関数」です。

多変数関数(ここでは必ず2変数ですが)が出てくるところが、
次に述べる複素関数論での偏微分の使用との大きな関わりがあります。

複素関数で成立する偏微分の公式(コーシー・リーマンの式)

実関数の場合の微分のもともとの考え方は、dy = (dy/dx)dx という、近似の「一次式」を新たに設定する事でした。では、これが複素関数の時はどうなるでしょう?

次のように考えます。

まず、導関数および微分係数も複素数で表されると考える事が重要です。

$$\frac{dF}{dz} =\alpha +i\beta \hspace{10pt}【\alpha と\beta は実数(関数)】$$

$$z = x + iy ,\hspace{5pt} dz = dx + idy, \hspace{5pt} F(z) = u + iv $$

$$dF=\frac{dF}{dz}dz=( \alpha +i\beta ) ( dx + idy) =(\alpha dx -\beta dy)+i(\beta dx + \alpha dy)$$

計算は、複素数の四則演算をしているだけです。実部と虚部に分けます。

次に、

$$F = u +i v = u(x,y) + i v(x,y) に対して dF = du + i dv$$

であるとすると、du と dv は次のようになるわけです:

$$du = \alpha dx -\beta dy,\hspace{10pt} dv =\beta dx + \alpha dy $$

さてここで、dF に対する du と dv は「全微分」でも表せるものとして定義します。(そういうものとして「複素関数の微分」を考えようという事です。)すると、

$$du=\frac{\partial u}{\partial x}dx+\frac {\partial u}{\partial y}dy,\hspace{10pt} dv=\frac{\partial v}{\partial x}dx+\frac {\partial v}{\partial y}dy $$

とも表せるわけです。これを見ると、\(\alpha\) と \(\beta\) は、2通りの方法で表せるはずであり、

$$ \alpha= \frac{\partial u}{\partial x} =\frac {\partial v}{\partial y} ,\hspace{10pt} \beta=-\frac {\partial u}{\partial y} = \frac{\partial v}{\partial x} $$

この偏微分に関する関係が、複素関数の微分における特徴的な性質になります。

複素関数の微分で特徴的な公式

$$ \frac{\partial u}{\partial x} = \frac {\partial v}{\partial y} ,\hspace{10pt} -\frac {\partial u}{\partial y} = \frac{\partial v}{\partial x} $$ この関係式を「コーシー・リーマンの式」と言う事もあります。
名前よりも数学上重要な事は、複素関数が「微分可能」であるとは、
これら2つの偏微分に関する等式がともに成立するという事なのです。(必要十分条件です。)

コーシー・リーマンの関係式の導出
最終的には、図の dx , dy ごとの係数(関数ですが)を比較してコーシー・リーマンの関係式を導出しています。

尚、特に積分のほうで考え方として重要なのですが、どういった「経路」に沿って微積分をするのかという事も複素関数論では考えます。
その経路とは、例えば直線であるとか円であるとかいったもので、z = x + iy において、x と y の関数で表す事ができます。(例えば直線なら y = 2x など。)
そのような場合には、x と y は完全な独立関係にある変数ではなく、従属関係になります
従ってその場合には、媒介変数tを使って x = x(t) , y = y(t) を考える事ができます。そうなると、x と y を変数とする2変数関数 u(x,y) と v(x,y) はもとの変数を tとした合成関数と考える事ができます。
そのように考えると、上記のように複素関数の微分において全微分の考え方を使って定義をする事の意味も多少分かりやすくなるかと思います。

この偏微分に関する「コーシー・リーマンの関係式」は複素関数の積分のほうでむしろ重要になる事があり、例えば複素関数についてのコーシーの積分定理を導出する際に必要になります。

「正則」という考え方

上記の偏微分に関して成立する公式の他に、複素関数の微積分では「正則」という考え方も重要になります。これは、微積分をする対象の関数に1つの条件を課す事であり、基本的に複素関数論はその条件をつけた範囲内で理論を組み立てる事が多いです。

dz = dx + idy を考える時に、じつはある点を基準に考えた時に x と y をどのように動かすのかという問題があります。じつのところ、複素関数論では「どの方向に動かしたとしても」極限が一致する事を「微分可能」であると呼びます。(初等関数の微分ではその要件を満たします。)

$$\lim_{h\to 0}\frac{F(z+h)-F(z)}{h}\left(= \lim_{dz\to 0}\frac{F(z+dz)-F(z)}{dz} \right)$$

によって微分による導関数を定義するのは実関数の時と同じですが、「hの部分も複素数」であるところがじつはポイントであるわけです。

これらの事を踏まえたうえで、「1つの点を含む領域の任意の点」で微分可能な(小さな)領域が存在する時、その複素関数はその点で「正則」であると呼びます。また、複素関数が正則である領域においてはその関数は「正則関数」であると呼ばれます。数学の複素関数論の中では、多くの場合に微積分の対象をこの正則関数に限定する事で理論を組み立てているので、用語としては重要です。

文章の表現としては定義の仕方はいくつかあるのですが、ここではその1つを記します:

複素関数論での「正則関数」の定義
  • ある複素関数 F(z) と、ある点 z = z0 について、z0 を含むある領域で、「その領域内の任意の点で微分可能であるような」ものが存在する時、F(z) は点 z0 において正則であると呼ぶ。
  • ある領域の任意の点で F(z) が正則である時、その領域内で F(z) は「正則である」あるいは「正則関数である」などと言う。

参考文献・参考資料


基礎系 数学 複素関数論I (東京大学工学教程)

変分の計算

物理の理論では、微分とは少し意味合いが異なる変分という計算が行われる事があります。

変分とは?例①:光の屈折

汎関数という考え方 ■ 2点間を進むための最小時間と光の屈折 ■ 変分の記号と計算 

汎関数という考え方

ある関数 y = F(x) があった時、それをグラフに描いたとして、グラフの「弧長」sを決定する事ができます。この弧長sは、もちろん関数によって異なります。2端点が決まっている場合、 y = F(x) が どのような関数であるかに依存してsが決まるわけで、s=s(y) という関数であると考える事もできるわけです。このようなタイプの関数を汎関数と言います。

関数は通常F(x) などのように書きますが、汎関数である事を強調する場合には F[y] のように書かれる場合もあります。

2点間を進むための最小時間と光の屈折

通常の空間(ユークリッド空間)で2点を結ぶ最短距離は、2点間を結ぶ直線の距離です。同じ速さの物体を考える時にも、2点間を進むときの最短の時間となるのは直線軌道を通る時です。

しかし、領域によって速さが変わってしまう場合などは、じつは最短の時間となるのは直線軌道ではなく、折れ曲がったような経路になってしまいます。

どのような折れ線になるのかという問題自体は、普通の微分法で解く事ができます。ただし直交座標の平面を設定して軌道を関数と捉えた場合は関数形が変化して最短距離が決定すると見なせる事が重要で、それが変分の基本的な考え方であるというわけです。

光の屈折は、この問題の結果として表されると考えられています。
【※相対性理論で光線の軌道が曲がるという考え方は、これとはまた少し違った理論なので注意。】

変分の記号と計算

変分を表す時には、δ(デルタ)という記号を使います。これは、微分を表すためにdという記号を使うのと区別する意味があります。

ある汎関数I[y] があった時、 その変分 δ I[y] は、
δ I[y] = I[y+δy]-I[y] で表されます。
(この定義の仕方で考えられた変分を、特に「第1変分」とも言います。)
δy は様々な形の任意の(微小な)関数です。

変分の定義(「第1変分」)

汎関数 \(I[y]\) に対して $$δ I[y] = I[y+δy]-I[y]$$ \(\delta y\) は様々な形の任意の(微小な)関数。

変分の定義から、例えば2つの汎関数の和ついては
δ( I[y]+J[y] ) = ( I[y+δy]+J[y+δy] ) - ( I[y]+J[y] )= I[y+δy]-I[y] + ( J[y+δy]-J[y] )=δI+δJ
が成立します。差についても同様です。

これらの定義や考え方は、もともとの意味での「微分」がdF(x)=F(x+dx)-F(x) で表される事と似ています。

ただし、微分の場合のdxが(小さい)実数であるのに対して、変分の場合の δy は様々な形の任意の(微小な)関数であり、yと全然違う形の関数も含めて考えているという点が異なります。その意味で、変分と微分は違うものである事は強調されるのです。

一度計算を始めて変化させる関数yを通常の実変数として動かすとみなしてよい状態に持ち込んだ時には微分計算と同じ事ができるという特徴があります。ただし、通常の1変数の微分ではなく、基本的には多変数関数の偏微分を含んだ全微分の計算になる点に注意する必要があります。

例②:解析力学 定積分に対する変分計算

問題の設定 ■ 計算の詳細 ■ オイラー・ラグランジュ方程式 

問題の設定

汎関数 I[y] が、次の形

$$I[y]=\int_a^bF(x,y,y^{\prime})dx$$

$$条件:端点 x=a, x=b でyについての変分\delta y=0$$

で表される場合を考えます。y は x の関数であるとします。

積分などがあるといかにも話が複雑になりそうですが、じつは「部分積分」を使って式を簡単にするなど、計算上の利点も一部存在します。

このとき、I[y]の変分 δI[y] は次のように計算します。

計算の詳細

まず定義に従って、 \( δ I[y] = I[y+δy]-I[y]\) ですが、この先がまず第一のポイントで、積分の中身の \(F( x,y,y^{\prime}) )\) については、xは動かさずに、yだけ変化すると考えます。さらに、この時にyの導関数は 「δy に対する導関数」の分だけ増減、つまり (δy)’ だけ増減します。

$$ δ I[y] = I[y+δy]-I[y] = \int_a^b F(x,y+\delta y,y^{\prime}+\delta y^{\prime} ) -F(x,y,y^{\prime})dx $$

続いて、yを通常の実数変数同様に扱えると考えて、積分の中身を全微分と同様に扱えるとみなします。この場合、xは動かしていませんのでdxに相当する項は0になります。

$$ F(x,y+\delta y,y^{\prime}+(\delta y)^{\prime} ) -F(x,y,y^{\prime}) =\delta y \frac{\partial F}{\partial y}+ (\delta y)^{\prime} \frac {\partial F}{\partial y ^{\prime} } $$

$$ δ I[y] = \int_a^b \delta y\frac{\partial F}{\partial y}+ (\delta y)^{\prime} \frac {\partial F}{\partial y ^{\prime} } dx= \int_a^b \delta y \frac{\partial F}{\partial y}dx + \int_a^b (\delta y)^{\prime} \frac {\partial F}{\partial y ^{\prime} } dx $$

次に、yの導関数に対する変分の項について、xに関して部分積分を行います。

$$(\delta y)’ =\frac{d}{dx}(\delta y)$$ 

の箇所に対して部分積分を適用するという事です。
【このような事ができるのはδyが「関数」であるからという事には一応注意。】

$$2番目の項について: \int_a^b (\delta y)^{\prime} \frac{\partial F}{\partial y ^{\prime} } dx =\left[ \delta y \frac{\partial F}{\partial y ^{\prime} } \right]_a^b- \int_a^b \delta y \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} } dx =\hspace{5pt} – \int_a^b \delta y \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} } dx $$

$$ 【∵\hspace{5pt}x=a,x=b で\delta y=0 という前提条件】$$

端点でδyが0になるという条件をつけているので部分積分した後の第1項は0になって消えます。この条件は、要するに端点は固定して関数形を変化させるという意味です。

これにより、δIを改めて書くと次のようになります。

$$\delta I = \int_a^b \delta y \frac{\partial F}{\partial y}dx – \int_a^b \delta y \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} } dx $$

$$= \int_a^b \delta y\left(\frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime} }\right) dx $$

さて、物理で使う場合は「ここまで変形できればじゅうぶん」という考え方をします。

オイラー・ラグランジュ方程式

上記の条件での汎関数 I[y] に対する変分 δI[y] が0になる条件を考えると、積分の中身の

$$ \frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime}} $$

という部分が0であればよい事が分かります。(δyは「任意の」(微小な)関数である事に少し注意。)

そこで、

$$ \frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime}} =0$$

という形の微分方程式が成立すればよいという事ですが、これは解析力学では座標系によらずこの形で使用できる運動方程式の形として知られていて、少し長ったらしい名称ですが「オイラー・ラグランジュ方程式」あるいは「オイラーの微分方程式」などとも呼ばれます。

通常のF=ma の形の運動方程式はシンプルな形ではありますが、じつは直線直交座標を特別扱いしていて、座標系を例えば極座標に変換しただけで結構面倒で汚い形にと変わってしまいます。

これに対して上記の形の運動方程式は任意の座標系に対してこの形のまま話を進められるという事で、理論的な扱いとしては便利である場合があります。

例③:相対性理論、リーマン幾何学

一般相対性理論、リーマン幾何学で変分を使う例もあります。

1つの例は「測地線」という、曲面上の2点を「曲面に沿って最短経路で」結ぶ曲線に対して成立する式の導出です。この場合、弧長に相当する次の形の汎関数を考えます。

$$ \int_a^b \sqrt{\sum_{i,j=0}^3g_{ij}\frac{dx_i}{dr}\frac{dx_j}{dr}}dr $$

これを直接変分して計算を進めたものを0とおくか、
あるいは積分の中身の関数を上記で得られた微分方程式

$$ \frac{\partial F}{\partial y} – \frac{d}{dx}\frac {\partial F}{\partial y ^{\prime}} =0$$

に代入して計算を進めるかで、結論の式を得ます。どちらの場合も、最初一般の媒介変数rで計算しておいて、途中でrがsに比例するかr=sとおいて式を簡単にする工夫が行われます。